Answer:
(15.23,41.016)
Step-by-step explanation:
WE must determine the mean of the data set: Which is the sum of the set divided by the number in the set.
[tex]= (21 + 24 + 25 + 32 + 35 + 31 + 29 + 28)/8 = 225/8 = 28.125[/tex]
We must also determine the standard deviation: Which is the square root of the variance and the variance is the sum of squares of the sample number minus the mean divided by the number if the set data:
[tex]= ((21 - 28.125)^{2} + (24 - 28.125)^{2} +(25 - 28.125)^{2} + (32 - 28.125)^{2} + (35 - 28.125)^{2} + (31 - 28.125)^{2} + (29 - 28.125)^{2} (28 - 28.125)^{2}[/tex]
[tex]= 148.877/8 = 18.6[/tex]
The 95% confidence interval is defined as: The mean ± 1.96*standard deviation divided by the sqaure root of the number of data in the set:
[tex]= 28.125 + (1.96 *18.6)/(\sqrt{8} )[/tex]
[tex]= 41.016[/tex]
[tex]= 28.125 - (1.96 * 18.6)/(\sqrt{8}) = 15.23[/tex]
The confidence interval for this data set is (15.23,41.016)
Answer:
32.7 ± 2.262(1.19)
Step-by-step explanation:
See attached pictures
16+32 as a product of two factors using gif and distributive property
16 + 32 = 16 x 1 + 16 x 2 = 16 x (1 + 2)
A card is picked from a standard deck of 52 cards. Determine the odds against and the odds in favor of selecting a red face card (king, queen, or jack).
6 red face cards
->in favour:
6/52
= 3/26
-> against:
52-6= 46
46/52
=23/26
WILL GIVE EXTRA POINTS FOR ANSWER ⭐️⭐️!! PLEASE EXPLAIN IF POSSIBLE
Answer:
B. (-3, 10)
Step-by-step explanation:
I am going to graph the given equation. I then will see which of the points given are within the required area.
-> See attached.
-> I have explained in the image more in-depth as well.
Help solve for “q”
—————————————
Digram:-
[tex] \\ [/tex]
[tex]\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\put(5,1){\vector(1,0){4}}\put(5,1){\vector(-1,0){4}}\put(5,1){\vector(1,1){3}}\put(2,2){$\underline{\boxed{\large\sf a + b = 180^{\circ}}$}}\put(4.5,1.3){$\sf a^{\circ}$}\put(5.7,1.3){$\sf b^{\circ}$}\end{picture}[/tex]
[tex] \\ [/tex]
STEP :-
[tex] \dashrightarrow \tt(4q - 1) {}^{ \circ} + {117}^{ \circ} = 18 {0}^{ \circ} [/tex]
{Linear pair}
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \tt(4q - 1) {}^{ \circ}= 18 {0}^{ \circ} - {117}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt(4q - 1) {}^{ \circ}=63^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt4q - 1{}^{ \circ}=63^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt4q =63^{ \circ} + 1{}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt4q =64{}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt \: q = \dfrac{64}{4}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt \: q = \dfrac{16 \times 4}{4}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt \: q = \dfrac{16 \times \cancel4}{\cancel4}^{ \circ}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt \: q = \dfrac{16}{1}[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \bf q = 16 \degree[/tex]
[tex] \\ \\ [/tex]
Verification:
[tex] \\ [/tex]
[tex] \dashrightarrow \tt(4 \times 16- 1) {}^{ \circ} + {117}^{ \circ} = 18 {0}^{ \circ} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt(64- 1) {}^{ \circ} + {117}^{ \circ} = 18 {0}^{ \circ} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt63^{ \circ} + {117}^{ \circ} = 18 {0}^{ \circ} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \tt180^{ \circ} = 18 {0}^{ \circ} [/tex]
[tex] \\ [/tex]
LHS = RHS
HENCE VERIFIED!
Answer:
Value of [tex]\sf\purple{q\: = \:16.}[/tex]
Step-by-step explanation:
[tex]\rightarrow[/tex]As we know that,
Sum all angles that lie on a straight line = [tex]\sf\blue{180°}[/tex]
So,
[tex]\rightarrow[/tex] [tex]\sf{(4q-1)°+ 117°\: = \:180°}[/tex]
[tex]\rightarrow[/tex] [tex]\sf{(4q-1)\: = \:180-117}[/tex]
[tex]\rightarrow[/tex] [tex]\sf{(4q-1)\: = \:63}[/tex]
[tex]\rightarrow[/tex] [tex]\sf{4q\: = \:63+1}[/tex]
[tex]\rightarrow[/tex] [tex]\sf{q\: = \:\frac{64}{4}}[/tex]
[tex]\rightarrow[/tex] [tex]\sf{q\: = \:16}[/tex]
Thus, [tex]\sf\purple{q\: = \:16.}[/tex]
_________________________________
Hope it helps you:)
What is the total height of the plants that measured 1
1/8 and
1/4?
y=5/2x-9 find the y intercept
Answer:
(0,-9) You have to substitute 0 for x and solve for y
How can you tell that (496 + 77 + 189) x 10 is twice as large as (496 + 77 +189) x 5 without doing complicated calculations?
Answer:
Because 10 is twice as large as 5.
Step-by-step explanation:
1. For each diagram below, find the value of x
Which function has a maximum with the same maximum value as
f(x) = – |x + 3| – 2? f(x) = (x + 3)2 – 2 f(x) = –(x – 6)2 – 3
Answer:
The answer is c on edge or f(x) = 1 sqt x + 6 -2
Step-by-step explanation:
From the given two options, none of them has a function that has the same maximum value as f(x) = -|x+3|-2.
What is a function?A function is a correspondence between input numbers (x-values) and output numbers (y-values). It is used to describe an equation.
Given that:
f(x) = -|x + 3| - 2Suppose that x = c is a critical point of (x) then,
If f'(x) > 0 to the left of x = c and f'(x) < 0 to the right of x = c;
then x = c is a local maximum.If f'(x) < 0 to the left of x = c and f'(x) > 0 to the right of x = c;
then x = c is a local minimum.If f'(x) is the same sign on both sides of x = c;
then x = c and is neither a local maximum nor a local minimum.From the given equation, the critical points: x = -3
The intervals is: Increasing at -∞ < x < -3 and decreasing at -3<x<∞If we put the point x = -3 into - |x+3|-2
Then, y = -2 and it is Maximum at (-3, -2) Only f(x) = (x+3)^2 - 2 has a minimum at (-3,-2)We can therefore conclude that none of them has a function that has the same maximum value as f(x) = -|x+3|-2.
Learn more about the maximum and minimum of a function here:
https://brainly.com/question/6787214
#SPJ9
What is the approximate volume of a cone with a height of 9 ft and radius of 3 ft? Use 3.14 to approximate pi, and express your final answer to the nearest hundredth Enter your answer as a decimal in the box. ft3
The temperature at 1:00 p.m. on Tuesday was -13°C. There was an increase of 6º per
hour starting at 1:00 p.m. Which of the following best represents the Celsius
temperature n hours after 1:00 p.m. on Tuesday?
A. -13 + bn
B. -13 - 6n
C. -13n + 6
D. -13n - 6
At 1.00Pm the temperature was -13°C
No of hours be nIncrease rate=6°C/hourSo
The equation is
y=6n+(-13)y=6n-13y=-13+6nHow to solve x + y[tex]\frac{dy}{dx}[/tex] = 0
Given that solution goes to (2,0) Neither x nor y can exceed 2
Answer:
The answer is {D}
Step-by-step explanation:
Help help math math math math math
Answer:
A
Step-by-step explanation:
You can think about it as an equation without the inequality:
y = 5 - x OR y = -x + 5
Slope = -1
Y-intercept = 5
Graph B is a horizontal line with a slope of zero and y-intercept of 2. Graph A is the only one that fits the above parameters.
Hope this helps!
Answer:
a
Step-by-step explanation:
9x9/16+12 whats the answer
Answer:
17.0625
Step-by-step explanation:
Due to order of operations the division and multiplication get done first and the we add the 12
Answer:
2.89285714
Step-by-step explanation:
9x9/16+12
81/16+12
5.0625 + 12 = 17.0625
Hope this helps :)
Can somebody help me pls!
Answer: C
Step-by-step explanation:
Just look at a z-score table and multiply by 100.
-> (0.308538)(100) is about 30.85%
jack had m math problems to complete during his vacation. he solved the same number of problems every day and finished them all in 5 days. how many problems did jack solve per day.
If Jack finish them all in 5 days, then he can solve m/5 math problem in just one day.
Word problems leading to quadratic equationFrom the given question, jack can only solve m math problems in 5 days, this can be expressed as:
m problems = 5 days
The number of questions he can solve per day is expressed as:
x = 1 day
Take the ratio
m/x = 5/1
5x = m
x = m/5 math problems
This shows that jack can solve m/5 math problem in just one day
Learn more on ratio here: https://brainly.com/question/2328454
3. For each triangle, find the length of the labeled side.
Answer:
see explanation for detailed analysis
According to the line plot how many apples weigh 5/8 of a pound
Answer:
Answer:4 apples weigh 5/8 pound.
Step-by-step explanation:
Answer:
2(−5) − 10 = 2(0)
Step-by-step explanation:
If you substitute the values x = 0 and y = −5 into the second equation, you get a false statement
Find the area of sector RST Enter your answer in terms of a fraction of it and rounded to the nearest
hundredth.
Fort nite battle pass is 8 dollars
?A bag contains red, blue, and green candies. Benjamin pour
out a handful and counted 10 red, 6 blue, and 14 green
candies. According to these ratios, if the bag contains a total of
400 candies, about how many of them are blue?
4
Find the perimeter of a
Square with a side
length of 7 meters.
Answer: P=28 meters
Step-by-step explanation:
[tex]P=4[/tex] × a ⇒ a is the side length
[tex]P=4[/tex] × [tex]7[/tex]
[tex]P=28[/tex]
Answer:
28 m
Step-by-step explanation:
Given
Side length = 7 mPerimeter of a square
4 x Side length4 x 728 mA perfect score on a test with 25 questions is 100. Each question is worth the same number of points. How many points is each question on the test worth
Answer:
4
Step-by-step explanation:
100 divided by 25 equals 4.
Find the missing information for the triangle.
*not drawn to scale
• Make sure to find the missing angle measure and the 2 missing side
lengths.
missing angle:
180° - 90° - 30°
180° - 120°
60°
missing sides:
(a)
[tex]\rightarrow \sf tan(x)= \dfrac{opposite}{adjacent}[/tex]
[tex]\rightarrow \sf tan(30)= \dfrac{4}{adjacent}[/tex]
[tex]\rightarrow \sf adjacent= \dfrac{4}{tan(30)}[/tex]
[tex]\rightarrow \sf adjacent= 4\sqrt{3}[/tex]
[tex]\rightarrow \sf adjacent= 6.93 \ cm[/tex]
(b)
[tex]\sf \rightarrow sin(x)= \dfrac{opposite}{hypotensue}[/tex]
[tex]\sf \rightarrow sin(30)= \dfrac{4}{hypotensue}[/tex]
[tex]\sf \rightarrow hypotensue= \dfrac{4}{ sin(30)}[/tex]
[tex]\sf \rightarrow hypotensue= 8 \ cm[/tex]
Answer:
m∠X = 60°
BX = 8 cm
BM = 4√3 cm
Step-by-step explanation:
The sum of the interior angles of a triangle is 180°
Given:
m∠B = 30°m∠M = 90°⇒ m∠B + m∠M + m∠X = 180°
⇒ 30° + 90° + m∠X = 180°
⇒ 120° + m∠X = 180°
⇒ m∠X = 180° - 120°
⇒ m∠X = 60°
Using the sine rule to find the side lengths:
[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
(where A, B and C are the angles, and a, b and c are the sides opposites the angles)
Given:
m∠X = 60°m∠B = 30°m∠M = 90°MX = 4 cm[tex]\implies \dfrac{4}{\sin 30\textdegree}=\dfrac{BX}{\sin 90\textdegree}=\dfrac{BM}{\sin 60\textdegree}[/tex]
[tex]\implies BX=\sin 90\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]
[tex]=1 \cdot \dfrac{4}{\frac12}[/tex]
[tex]=1 \cdot 4 \cdot 2[/tex]
[tex]=8 \textsf{ cm}[/tex]
[tex]\implies BM=\sin 60\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]
[tex]=\dfrac{\sqrt{3}}{2}\cdot \dfrac{4}{\frac12}[/tex]
[tex]=\dfrac{\sqrt{3}}{2}\cdot 4 \cdot 2[/tex]
[tex]=4\sqrt{3} \textsf{ cm}[/tex]
The square root of 7^16 is equal to 7^n for some positive integer n. Find n.
[tex]\sqrt{7^{16}} = 7^n\\\\\implies \left(7^{16}\right)^{\tfrac 12} = 7^n\\\\\implies 7^{\left(\tfrac 12 \times 16\right)}=7^n\\\\\implies 7^8 = 7^n\\\\\implies \ln 7^8 = \ln 7^n\\\\\implies 8\ln 7 = n \ln 7\\\\\implies n =8[/tex]
[tex]\large \rm \sum \limits_{n = 0}^ \infty \frac{( { - 1)}^{1 + 2 + 3 + \dots + n} }{(2n + 1 {)}^{2} }[/tex]
The sum we want is
[tex]\displaystyle \sum_{n=0}^\infty \frac{(-1)^{T_n}}{(2n+1)^2} = 1 - \frac1{3^2} - \frac1{5^2} + \frac1{7^2} + \cdots[/tex]
where [tex]T_n=\frac{n(n+1)}2[/tex] is the n-th triangular number, with a repeating sign pattern (+, -, -, +). We can rewrite this sum as
[tex]\displaystyle \sum_{k=0}^\infty \left(\frac1{(8k+1)^2} - \frac1{(8k+3)^2} - \frac1{(8k+7)^2} + \frac1{(8k+7)^2}\right)[/tex]
For convenience, I'll use the abbreviations
[tex]S_m = \displaystyle \sum_{k=0}^\infty \frac1{(8k+m)^2}[/tex]
[tex]{S_m}' = \displaystyle \sum_{k=0}^\infty \frac{(-1)^k}{(8k+m)^2}[/tex]
for m ∈ {1, 2, 3, …, 7}, as well as the well-known series
[tex]\displaystyle \sum_{k=1}^\infty \frac{(-1)^k}{k^2} = -\frac{\pi^2}{12}[/tex]
We want to find [tex]S_1-S_3-S_5+S_7[/tex].
Consider the periodic function [tex]f(x) = \left(x-\frac12\right)^2[/tex] on the interval [0, 1], which has the Fourier expansion
[tex]f(x) = \frac1{12} + \frac1{\pi^2} \sum_{n=1}^\infty \frac{\cos(2\pi nx)}{n^2}[/tex]
That is, since f(x) is even,
[tex]f(x) = a_0 + \displaystyle \sum_{n=1}^\infty a_n \cos(2\pi nx)[/tex]
where
[tex]a_0 = \displaystyle \int_0^1 f(x) \, dx = \frac1{12}[/tex]
[tex]a_n = \displaystyle 2 \int_0^1 f(x) \cos(2\pi nx) \, dx = \frac1{n^2\pi^2}[/tex]
(See attached for a plot of f(x) along with its Fourier expansion up to order n = 10.)
Expand the Fourier series to get sums resembling the [tex]S'[/tex]-s :
[tex]\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{k=0}^\infty \frac{\cos(2\pi(8k+1) x)}{(8k+1)^2} + \sum_{k=0}^\infty \frac{\cos(2\pi(8k+2) x)}{(8k+2)^2} + \cdots \right. \\ \,\,\,\, \left. + \sum_{k=0}^\infty \frac{\cos(2\pi(8k+7) x)}{(8k+7)^2} + \sum_{k=1}^\infty \frac{\cos(2\pi(8k) x)}{(8k)^2}\right)[/tex]
which reduces to the identity
[tex]\pi^2\left(\left(x-\dfrac12\right)^2-\dfrac{21}{256}\right) = \\\\ \cos(2\pi x) {S_1}' + \cos(4\pi x) {S_2}' + \cos(6\pi x) {S_3}' + \cos(8\pi x) {S_4}' \\\\ \,\,\,\, + \cos(10\pi x) {S_5}' + \cos(12\pi x) {S_6}' + \cos(14\pi x) {S_7}'[/tex]
Evaluating both sides at x for x ∈ {1/8, 3/8, 5/8, 7/8} and solving the system of equations yields the dependent solution
[tex]\begin{cases}{S_4}' = \dfrac{\pi^2}{256} \\\\ {S_1}' - {S_3}' - {S_5}' + {S_7}' = \dfrac{\pi^2}{8\sqrt 2}\end{cases}[/tex]
It turns out that
[tex]{S_1}' - {S_3}' - {S_5}' + {S_7}' = S_1 - S_3 - S_5 + S_7[/tex]
so we're done, and the sum's value is [tex]\boxed{\dfrac{\pi^2}{8\sqrt2}}[/tex].
Find the mean of the data.
8,14,22,7,2,11,25,7,5,9
Answer:
11
Step-by-step explanation:
Given:
8,14,22,7,2,11,25,7,5,9
Solve:
Put in order:
2, 5, 7, 7, 8, 9, 11, 14, 22, 25
Note:
Mean-
Add up all data values to get the sumCount the number of values in your data setDivide the sum by the count2+ 5+7+7+8+9+11+ 14+22+25=110
110/10 = 11
Hence, the mean of the data is 11.
[RevyBreeze]
Answer:
The mean of the data given is 11
What is mean?
The mean is the arithmetic average of a set of given numbers. The median is the middle score in a set of given numbers. The mode is the most frequently occurring score in a set of given numbers.
Step-by-step explanation:
Have a great rest of your day
#TheWizzer
(pls give the person who answered before me braineist)
the equation is :
answer x:
Answer:
A) x would be 21 if i interpreted it right
Step-by-step explanation:
4x - 11 = 73
i think anyways
4x = 73 + 11
4x = 84
x = 21
i d k what B means?
Please the answer ... Integral
Answer:
[tex]\frac{dx^{2} (x+1)S^{2} }{2(x^{2} +6x+3)^{2} }+ C[/tex]
Step-by-step explanation:
Find the area of the following shape. (8 points)
what is the answer?
Answer:
72 square units
Step-by-step explanation:
Identify the heightIdentify the lengthMultiply those two togetherThat is your answerH = 9 units
L = 8 units
A = H × L
A = 9 × 8
A = 72 square units
Can somebody please help with this, I have been stuck on it for a while
Answer:
$2821.50
Step-by-step explanation:
value = 2700 (deposit) x 0.003 (rate) x 15 (time) + 2700
[tex]~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$2700\\ r=rate\to 0.3\%\to \frac{0.3}{100}\dotfill &0.003\\ t=years\dotfill &15 \end{cases} \\\\\\ A=2700[1+(0.003)(15)]\implies A=2700(1.045)\implies A=2821.5[/tex]