Answer: 0%?
Step-by-step explanation: there isn't much to this problem because if it had a deviation of 3 from 68, it could be 7 digits from 65 to 71, but since 72 is out of the range, i can only say that this answer is not very correct if it has answer choices other than 0.
The probability is 0.160
What is probability?
'Probability means possibility. It is a branch of mathematics that deals with the occurrence of a random event. The value is expressed from zero to one.'
mean (μ) = 68 inches
Standard Deviation (σ) = 3
We know,
Z = [tex]\frac{x - mean}{standard deviation}[/tex]
From the normal distribution bell curve, we can see that the percentage of students taller than 72 inches = 14% + 2%
= 16%
The probability that a randomly selected student will be taller than 72 inches = 16/100
= 4/25
= 0.16
= 16%
Hence, we can conclude, that the probability that a randomly selected student will be taller than 72 inches is 0.160
Learn more about probability here:
https://brainly.com/question/11234923
#SPJ2
Pls help I’ll brainlest
Write the expression. Then, complete the statements.
twice the difference of a number and seven
The word "twice" means multiplication by 2 v
The words "the difference of indicate
Find an equation for the line with the given property. (a) It passes through the point (2, −6) and is parallel to the line 4x + y − 10 = 0.
It has x-intercept 6 and y-intercept 4.
Answer:
[tex]y = -4x + 2[/tex]
Step-by-step explanation:
Required
Determine the equation
From the question, we understand that, it is parallel to:
[tex]4x + y -10 = 0[/tex]
This means that they have the same slope.
Make y the subject to calculate the slope of: [tex]4x + y -10 = 0[/tex]
[tex]y = -4x + 10[/tex]
The slope of a line with equation [tex]y =mx + c[/tex] is m
By comparison:
[tex]m = -4[/tex]
So, the slope of the required equation is -4.
The equation is then calculated as:
[tex]y = m(x - x_1) + y_1[/tex]
Where:
[tex](x_1.y_1) = (2,-6)[/tex]
So, we have:
[tex]y = -4(x - 2) -6[/tex]
Open bracket
[tex]y = -4x + 8 -6[/tex]
[tex]y = -4x + 2[/tex]
Help please!!!!!!!!!!!!!!
Answer:
Step-by-step explanation:
From Left (earliest) to Right (most recent)
First Pharaoh 3100 BC
First Babylon 1830 BC
First Mali 1235 CE
First US President 1789 CE
Find x
x³ + 3x - 14 = 0
x³ + x² - x² - x + 4x + 4 = 18
x²(x + 1) - x(x + 1) + 4(x + 1) = 18
(x + 1)(x² - x + 4) = 18
x² - x + 4 = 18/(x + 1)
x² - x + 4 - 6 = 18/(x + 1) - 6
x² - x - 2 = 18/(x + 1) - 6
(x - 2)(x + 1) = (18 - 6(x + 1))/(x + 1)
(x - 2)(x + 1) = (18 - 6x - 6)/(x + 1)
(x - 2)(x + 1) = (12 - 6x)/(x + 1)
(x - 2)(x + 1) = (-6(x - 2))/(x + 1)
x + 1 = (-6(x - 2))/(x + 1)(x - 2)
x + 1 = -6/(x + 1)
(x + 1)² = -6
x² + 2x + 8 = 0
x = (-b +- √(b² - 4ac))/2a
x = (-2 +- √(4 - 32))/2
x = (-2 +- √(-28)/2
x = (-2 +- i√28)/2
Something's wrong.
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: x = - 1 \: + \: i \sqrt{6} \:(or) \: \: x = - 1 \: -\: i \sqrt{6} }}}}}}[/tex]
And[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {x\:=\:2}}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
[tex] \: {x}^{3} + 3x - 14 = 0[/tex]
➺[tex] \: {x}^{2} (x + 1) - x(x + 1) + 4(x + 1) = 18[/tex]
➺[tex] \: (x + 1)( {x}^{2} - x + 4) = 18[/tex]
➺[tex] \: {x}^{2} - x + 4 = \frac{18}{(x + 1)} [/tex]
➺[tex] \: {x}^{2} - x + 4 - 6 = \frac{18}{(x + 1)} - 6[/tex]
➺[tex] \: (x - 2)(x + 1) = \frac{18 - 6(x + 1)}{(x + 1)} [/tex]
➺[tex] \: (x - 2)(x + 1) = \frac{18 - 6x - 6}{(x + 1)} [/tex]
➺[tex] \: (x - 2)(x + 1) = \frac{12 - 6x}{(x + 1)} [/tex]
➺[tex] \: (x - 2)(x + 1) = \frac{ - 6(x - 2)}{(x + 1)} [/tex]
➺[tex] \: (x + 1 )² = \frac{ - 6(x - 2)}{(x + 1)(x - 2)} [/tex]
➺[tex] \: (x + 1)² = \frac{ - 6}{(x + 1)} [/tex]
[tex]\sf\pink{Error\:corrected\:here. }[/tex]
➺[tex] \: {x}^{2} + 2x + 1 = - 6[/tex]
➺[tex] \: {x}^{2} + 2x + 7 = 0[/tex]
By quadratic formula, we have
➺[tex] \: x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
➺[tex] \: x = \frac{ - 2± \sqrt{ {2}^{2} - 4.1.7} }{2 \times 1} [/tex]
➺[tex]x = \frac{ - 2± \sqrt{ - 24} }{2 } [/tex]
➺[tex] \: x = \frac{ - 2± \sqrt{ - 1 \times 4 \times 6} }{2} [/tex]
➺[tex] \: x = \frac{ - 2± \sqrt{ - 1} \times \sqrt{4} \times \sqrt{6} }{2} [/tex]
➺[tex] \: x = \frac{ - 2 \: ± \: i \times 2 \times \sqrt{6} }{2} [/tex]
➺[tex] \: x = \frac{ - 2 \: ± \:i \: 2 \sqrt{6} }{2} [/tex]
➺[tex] \: x = \frac{ 2 \: ( - 1 \: ± \: i \: \sqrt{6}) }{2} [/tex]
➺[tex] \: x = - 1 \: ± \: i \sqrt{6} [/tex]
Therefore, the two values of [tex]x[/tex] are ([tex] \: - 1 \: + \: i \sqrt{6}[/tex]) and ([tex] \: - 1 \: -\: i \sqrt{6}[/tex]).
Let us look at another method.[tex]x[/tex]³ + 3 [tex]x[/tex] - 14 = 0
➼ [tex]x[/tex]³ + 3 [tex]x[/tex] = 14
➼ [tex]x[/tex] ( [tex]x[/tex]² + 3 ) = 14
Factors of 14 = 1, 2, 7 and 14.
a) Substituting [tex]x\:=\:1[/tex], we have
➼ 1 ( 1 + 3 ) ≠ 14
➼ 1 x 4 ≠ 14
➼ [tex]\boxed{ 4\: ≠ \:14 }[/tex]
b) Substituting [tex]x\:=\:2[/tex], we have
➼ 2 ( 2² + 3 ) = 14
➼ 2 ( 4 + 3 ) = 14
➼ 2 x 7 = 14
➼ [tex]\boxed{ 14 \:= \:14 }[/tex]
c) Substituting [tex]x\:=\:7[/tex], we have
➼ 7 ( 7² + 3 ) ≠ 14
➼ 7 ( 49 + 3 ) ≠ 14
➼ 7 x 52 ≠ 14
➼ [tex]\boxed{ 364\: ≠ \:14 }[/tex]
d) Substituting [tex]x\:=\:14[/tex], we have
➼ 14 ( 14² + 3 ) ≠ 14
➼ 14 x 199 ≠ 14
➼ [tex]\boxed{ 2786\: ≠ \:14 }[/tex]
Hence, our only real solution is 2.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{❦}}}}}[/tex]
The table shows a linear relationship between x and y.
х
у
-20
96
-12
60
-6
33
-2
15
What is the rate of change of y with respect to x?
Answer:
[tex] -\frac{9}{2} [/tex]
Step-by-step explanation:
Rate of change of x and y can be calculated using the following formula and using any two given pair of values from the table:
Rate of change = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using (-12, 60) and (-6, 33).
Where,
[tex] (-12, 60) = (x_1, y_1) [/tex]
[tex] (-6, 33) = (x_2, y_2) [/tex]
Plug is the values
Rate of change = [tex] \frac{33 - 60}{-6 -(-12)} [/tex]
Rate of change = [tex] \frac{-27}{6} [/tex]
Simplify
Rate of change = [tex] \frac{-9}{2} [/tex]
Rate of change = [tex] -\frac{9}{2} [/tex]
It costs $21.50 to enter an amusement park and $0.50 to ride a ride. You have $24. Write an equation that represents the number r of rides you can ride.
Answer:
$24.00=$21.50+r*$.50
Step-by-step explanation:
total cost= entrance fee + r (number of rides) * $0.50 (cost of rides)
$24.00=$21.50+r*$.50
2.50=r*.50
2.5/.5=r
r=5
3.7 pounds of meat costs $20.35. What is the price per pound?
Answer:
$5.5 per pound of meat
Step-by-step explanation:
$20.35 ÷ 3.7 = $5.50
Hope this is helpful
Need help on this question been stuck on it
Answer:
Exponential Function
Step-by-step explanation:
y values increase by x4
Answer:
exponential function
the ans is b
peter bought 3 suits and 3 pairs of jeans and paid $2397. James bought 8 suits and 11 pairs of jeans and paid $6989. What is the price of each?
Answer:
Therefore each suit cost $600 and each jean cost $199
Step-by-step explanation:
Let x represent the price of each suit and let y represent the price of each jeans.
Since 3 suits and 3 pairs of jeans cost $2397, this can be represented by the equation:
3x + 3y = 2397
Dividing through by 3:
3x/3 + 3y.3 = 2397/3
x + y = 799 (1)
Also, 8 suits and 11 pairs of jeans cost $6989, this can be represented by the equation:
8x + 11y = 6989 (2)
To find x and y, solve equation 1 and 2 simultaneously. Multiply equation 1 by 8 and subtract from equation 2 to get y:
3y = 597
y = $199
Put y = $199 in equation 1:
x + 199 = 799
x = $600
Therefore each suit cost $600 and each jean cost $199.
Rationalize the denominator of the fraction and enter the new denominator below.
Answer:
7/19
Step-by-step explanation:
7/19=square root of 11=22-3 19
If the distance from D to D' is 10 and the distance from A to D is 2 what is the scale factor?
Answer:
5
Step-by-step explanation:
10/2=5
The scale factor of the given case that the distance from D to D' is 10 and the distance from A to D is 2 will be 5.
What is the scale factor?
The ratio between comparable measurements of an object and a representation of that object is known as a scale factor in mathematics.
The scale factor is the ratio between two big and small figures and the ratio is called a scale for the given geometry.
For example, if we have a triangle with a side of 10 meters and another triangle with a side of 5 then the scale ratio will be 10/5 = 2.
Given that
distance from D to D' is 10
distance from A to D is 2
So the scale ratio will be
DD'/AD = 10/2 = 5 hence scale ratio will be 5 for the given
geometry.
For more about scale ratio,
https://brainly.com/question/13770371
#SPJ2
Convert the following improper fraction to a whole number or a mixed number: 41/6
Answer:
6 and 5 over 6
6 5/6
Step-by-step explanation:
it would be a mixed fraction because 6 can't go into 41 evenly
Answer:
6
Hope that this helps!
If f(x) is an exponential function where f(-2,5) = 9 and f(7) = 91, then find the value of f(12), to the nearest hundredth.
Answer:
[tex]f(12) = 323.02[/tex]
Step-by-step explanation:
Given
[tex]f(-2.5) = 9[/tex]
[tex]f(7) = 91[/tex]
[tex]f(12) = 16.7 * 1.28^{12[/tex]
Required
[tex]f(12)[/tex]
An exponential function is:
[tex]f(x) = ab^x[/tex]
[tex]f(-2.5) = 9[/tex] implies that:
[tex]9 = ab^{-2.5}[/tex]
[tex]f(7) = 91[/tex] implies that:
[tex]91 = ab^7[/tex]
Divide both equations
[tex]91/9 = ab^7/ab^{-2.5}[/tex]
[tex]91/9 = b^7/b^{-2.5}[/tex]
Apply law of indices
[tex]91/9 = b^{7+2.5}[/tex]
[tex]10.11 = b^{9.5}[/tex]
Take 9,5th root of both sides
[tex]b = 1.28[/tex]
So, we have:
[tex]9 = ab^{-2.5}[/tex]
[tex]9 = a * 1.28^{-2.5}[/tex]
[tex]9 = a * 0.54[/tex]
[tex]a = 9/0.54[/tex]
[tex]a = 16.7[/tex]
f(12) is calculated as:
[tex]f(x) = ab^x[/tex]
[tex]f(12) = 16.7 * 1.28^{12[/tex]
[tex]f(12) = 323.02[/tex]
Which shows the following expression after the negative exponents have been eliminated?
Step-by-step explanation:
The given expression is :
[tex]\dfrac{a^3b^{-2}}{ab^{-4}}[/tex]
We need to simplify the above expression.
a³ is in numerator and a is in denominator. It gts cancelled.
[tex]\dfrac{a^3b^{-2}}{ab^{-4}}=\dfrac{a\times a\times a\times b\times b\times b\times b}{a\times b \times b}\\\\=\dfrac{a^2\times b^{-2}\times b^4}{1}\\\\=\dfrac{a^2}{b^{-2}}[/tex]
Hence, this is the required solution.
If P = (7,-4), Find:
(180° (P)
([?], []
Enter
Step-by-step explanation:
the answer is in the above image
ano ang area ng isang maliit na parisukat
Answer:
Area of square = Side²
Step-by-step explanation:
The area of a 2-D region, form, or flattened lamina in the planes is the quantity that represents its extent. On the 2-D surface or 3-D object, surface is its counterpart. A shape's area can be calculated by comparing it to squares of a specific size.
Area of square = Side²
Please tell me how to do it thank you
Answer:
First set: 0.95. Second set: 0.86. Third set: 0.88.
Step-by-step explanation:
Imagine that these are not decimals, they are regular numbers (for example: 0.88 is turned into 88). You would determine which one is the greatest depending on which one is higher (like 44 is higher than 32). Therefor the first set: 0.95 the second set: 0.86 the third set: 0.88.
Which function is shown in the graph below?
Answer:y=log1x
Step-by-step explanation:
The graph of the function f(x)=4/5 sqrt x is shown.
What is the domain of the function?
Answer:
All real number greater than equal to zero.
Step-by-step explanation:
The function is given by
[tex]f(x) = \frac{4}{5}\sqrt x[/tex]
The domain is defined as the input values so that the function is well defined.
here, the values of x should be all real number and zero also.
So, the correct option is (d).
Answer:
D
Step-by-step explanation:
3+5 plz help will gibe brain
Answer:
8
Step-by-step explanation:
In a bread recipe, the ratio of milk
to flour is 5 to 4. If 7 cups of flour
are used, how many cups of milk
are used?
can anyone help please??
order of operation problem who two operations inside parentheses and two ex outside ( using all add, subtract, multiply and divide)
PLEASE SHOW ALL WORK
Answer:
17 + 123 (4 - 1) + (36 / 18) 52 =
17 + 123 x 3 + 2 x 52 =
17 + 369 + 104 =
17 + 473 =
490
Step-by-step explanation:
hope this helps! i made up everything so i hope its okay!
If a normal distribution has a mean of 154 and a standard deviation of 15,
what is the value that has a z-score of 1.6?
Answer:
The correct answer is - 178.
Step-by-step explanation:
The standard deviation is a measure of the amount of dispersion in a set of values.
Given:
Mean of a normal distribution (m) = 154
Standard deviation (s) = 15
z-score = 1.6
Solution:
To find: value (x) that has a z-score of 1.6
z-score is given by = x-u/15
1.6*15 = x-154
=> 154+24 = x
x = 178
2x – 3(X + 8) = -21
Solve for x step by step
Please answer quickly
Answer:
x = -3
Step-by-step explanation:
2x – 3(x + 8) = -21
Distribute
2x - 3x - 24 = -21
Combine like terms
-x - 24 = -21
Add 24 to both sides
-x = 3
Multiply both sides by -1
x = -3
In the questions below suppose the variable x represents students and represents courses, and:
•M(y): y is a math course F(x): x is a freshman
•B(x): x is a full-time student T(x,y): x is taking
•Write the statement in good English without using variables in your answers.
Answer:
Here the answer is given as follows,
Step-by-step explanation:
The last three parts are coming with a question mark, so can't answer those parts. post the image or write it properly
a) Every student is taking at least one course.
[tex]\forall x \exists y T(x,y)[/tex]
So for all x, there is a y such that T(x,y) is a true will be given by the above statement
b) There is a part-time student who is not taking any math courses.
[tex]\exists x \forall y [A(x) \Lambda (M(y) \rightarrow ~T(x,y))][/tex]
There are 750 identical plastic chips numbered 1 through 750 in a box. What is the probability of reaching into the box and randomly drawing a chip number that is smaller than 627
Answer:
0.8358 = 83.58% probability of reaching into the box and randomly drawing a chip number that is smaller than 627
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
There are 750 identical plastic chips numbered 1 through 750 in a box
This means that [tex]a = 1, b = 750[/tex]
What is the probability of reaching into the box and randomly drawing a chip number that is smaller than 627?
[tex]P(X < x) = \frac{627 - 1}{750 - 1} = 0.8358[/tex]
0.8358 = 83.58% probability of reaching into the box and randomly drawing a chip number that is smaller than 627
What is the slope of the line that passes through the points (10, 5) and (15,20)? Write your answer in simplest form.
Answer:
3
Step-by-step explanation:
(10, 5) and (15,20)
m = rise/run
m = ∆y/∆x
m = (y₂ - y₁) / (x₂ - x₁)
m = (20 - 5) /(15 - 10)
m = 15/5
m = 3
A concession stand at an athletic event is trying to determine how much to sell cola and iced tea for in order to maximize revenue. Let x be the price per cola and y the price per iced tea. Demand for cola is 100 – 34x + 5y colas per game and iced tea is 50 + 3x – 16y iced teas per game The concession stand should charge: dollars per cola, dollars per iced tea, in order to maximize revenue. The maximum revenue for one game is: dollars.
Solution :
Demand for cola : 100 – 34x + 5y
Demand for cola : 50 + 3x – 16y
Therefore, total revenue :
x(100 – 34x + 5y) + y(50 + 3x – 16y)
R(x,y) = [tex]$100x-34x^2+5xy+50y+3xy-16y^2$[/tex]
[tex]$R(x,y) = 100x-34x^2+8xy+50y-16y^2$[/tex]
In order to maximize the revenue, set
[tex]$R_x=0, \ \ \ R_y=0$[/tex]
[tex]$R_x=\frac{dR }{dx} = 100-68x+8y$[/tex]
[tex]$R_x=0$[/tex]
[tex]$68x-8y=100$[/tex] .............(i)
[tex]$R_y=\frac{dR }{dx} = 50-32x+8y$[/tex]
[tex]$R_y=0$[/tex]
[tex]$8x-32y=-50$[/tex] .............(ii)
Solving (i) and (ii),
4 x (i) ⇒ 272x - 32y = 400
(ii) ⇒ (-) 8x - 32y = -50
264x = 450
∴ [tex]$x=\frac{450}{264}=\frac{75}{44}$[/tex]
[tex]$y=\frac{175}{88}$[/tex]
So, x ≈ $ 1.70 and y = $ 1.99
R(1.70, 1.99) = $ 134.94
Thus, 1.70 dollars per cola
1.99 dollars per iced ted to maximize the revenue.
Maximum revenue = $ 134.94