Answer:
.
Explanation:
g Suppose 0.0350 g M g is reacted with 10.00 mL of 6 M H C l to produce aqueous magnesium chloride and hydrogen gas. M g ( s ) + 2 H C l ( a q ) → M g C l 2 ( a q ) + H 2 ( g ) What is the limiting reactant in this reaction?
Answer:
Mg will be the limiting reagent.
Explanation:
The balanced reaction is:
Mg + 2 HCl → MgCl₂ + H₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
Mg: 1 moleHCl: 2 molesMgCl₂: 1 moleH₂: 1 moleBeing the molar mass of each compound:
Mg: 24.3 g/moleHCl: 36.45 g/moleMgCl₂: 95.2 g/moleH₂: 2 g/moleBy reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
Mg: 1 mole* 24.3 g/mole= 24.3 gHCl: 2 moles* 36.45 g/mole= 72.9 gMgCl₂: 1 mole* 95.2 g/mole= 95.2 gH₂: 1 mole* 2 g/mole= 2 g0.0350 g of Mg is reacted with 10.00 mL (equal to 0.01 L) of 6 M HCl.
Molarity being the number of moles of solute that are dissolved in a certain volume, expressed as:
[tex]Molarity=\frac{number of moles of solute}{volume}[/tex]
in units [tex]\frac{moles}{liter}[/tex]
then, the number of moles of HCl that react is:
[tex]6 M=\frac{number of moles of HCl}{0.01 L}[/tex]
number of moles of HCl= 6 M*0.01 L
number of moles of HCl= 0.06 moles
Then you can apply the following rule of three: if by stoichiometry 2 moles of HCl react with 24.3 grams of Mg, 0.06 moles of HCl react with how much mass of Mg?
[tex]mass of Mg=\frac{0.06 moles of HCl* 24.3 grams of Mg}{2 moles of HCl}[/tex]
mass of Mg= 0.729 grams
But 0.729 grams of Mg are not available, 0.0350 grams are available. Since you have less mass than you need to react with 0.06 moles of HCl, Mg will be the limiting reagent.
The limiting reactant in the reaction is Magnesium (Mg)
From the question,
We are to determine the limiting reactant in the reaction.
The given balanced chemical equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
This means
1 mole of Mg is required to react completely with 2 moles of HCl
Now, we will determine the number of moles of each reactant present
For Magnesium (Mg)Mass = 0.0350 g
Using the formula
[tex]Number\ of\ moles = \frac{Mass}{Atomic\ mass}[/tex]
Atomic mass of Mg = 24.305 g/mol
∴ Number of moles of Mg present = [tex]\frac{0.0350}{24.305}[/tex]
Number of moles of Mg present = 0.00144 mole
For HClConcentration = 6M
Volume = 10.00 mL = 0.01 L
Using the formula
Number of moles = Concentration × Volume
∴ Number of moles HCl present = 6 × 0.01
Number of moles HCl present = 0.06 mole
Since,
1 mole of Mg is required to react completely with 2 moles of HCl
Then
0.00144 mole of Mg is required to react completely with 2×0.00144 mole of HCl
2×0.00144 = 0.00288
∴ The number of moles of HCl required to react completely with the Mg is 0.00288 mole
Since the number of moles of HCl present is more than 0.00288 mole, then HCl is the excess reactant and Mg is the limiting reactant.
Hence, the limiting reactant in the reaction is Magnesium (Mg)
Learn more here: https://brainly.com/question/13979150
Part B
[H3O+] = 2 x 10-6 M
Express your answer using one decimal place.
Answer:
pH = 5.7
Explanation:
Which is the pH of the solution?
The pH is a measurement widely used in chemistry in quality assurance of products and another analysis. Is defined as the -log [H3O+]. That means, the pH of the solution that is [H3O+] = 2x10-6 M is:
pH = -log [H3O+]
pH = -log [2x10-6 M]
pH = 5.7You pre-weigh a glass vial to hold your sample and find its mass to be 5.010 g. You add your sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. What is the mass of the sample in grams
When we pre-weigh a glass vial to hold our sample and find its mass to be 5.010 g. Then we add our sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. The mass of the sample in grams is 1.12 g.
What is mole concept?Avogadro's number is the number of units in one mole of any substance and equals to 6.02214076 × 10²³. The units can be electrons, atoms, ions, or molecules.
No. of moles is defined as a particular no. of particles that we can calculate with the help of Avogadro’s number.
Mass of a particular product is also find out by stoichiometry of a reaction as per the no. of mole given in the reaction.
Mass is generally can be represented by units like Kg, g etc.
Given,
weigh of glass vial = 5.010 g
weigh of glass vial with sample = 6.130 g
Therefore, When we pre-weigh a glass vial to hold our sample and find its mass to be 5.010 g. Then we add our sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. The mass of the sample in grams is 1.12 g.
Learn more about mass, here:
https://brainly.com/question/19694949
#SPJ2
Aqueous hydrochloric acid reacts with solid sodium hydroxide to produce aqueous sodium chloride and liquid water . What is the theoretical yield of sodium chloride formed from the reaction of 0.73g of hydrochloric acid and 1.3g of sodium hydroxide?
Round your answer to 2 significant figures.
i think its 2.0
Why do i think this-If you add 0.73g to 1.3g it comes to 2.0g
Anyone knows this? I don’t know this
QUESTION :WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTROLLED EXPERIMENT TO TEST THIS?
ANSWER:
D. The temperatures of five breakers of 250 mL of water are varied, and 10 g of sugar is added to each breaker.
The pH of a solution with a hydrogen-ion concentration of 4.90 x 10-'Mi
Please answe I’ll give you brainliest
Answer:
pH < 7; pH = 7; pH > 7
Explanation:
when dealing with an acidic base, you have the formula for [H3O+] > [OH-] which yields a pH < 7.
when you have a neutral base, the reactive ion concentration would be [H3O^+] = [OH^-] which yields a pH = 7.
finally, when dealing with a basic classification, the formula would be [H3O^+] < [OH^-] yields a pH > 7.
name hydrogen ion
what the symbolotom
Answer:
H+
Explanation:
it's H+
as you see hydrogen ion it could H+
At a given temperature, K = 1.3x10^-2 for the reaction:
N2(g) + 3H2(g) ⇌ 2NH3(g)
Calculate values of K for the following reactions at this temperature.
a. 1/2N2 + 3/2H2(g) ⇌ NH3(g)
b. 2NH3(g) ⇌ N2(g) + 3H2(g)
c. NH3(g) ⇌ 1/2 N2(g) + 3/2H2(g)
d. 2N2(g) + 6H2(g) ⇌ 4NH3(g)
Answer:
a) 0.11
b)76.9
c) 8.8
d) 1.7*10^-4
Explanation:
Step 1: Data given
K = 1.3 * 10^-2 for the reaction N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 2: Formula of K
aA(g) + bB(g) ⇌ cC(g) + dD(g)
K = [C]^c *[D]^d / [A]^a * [B]^b
K = 1.3 * 10^-2 = [NH3]² / [H2]³*[N2]
Step 3:
a) 1/2N2 + 3/2H2(g) ⇌ NH3(g)
N2(g) + 3H2(g) ⇌ 2NH3
1/2N2 + 3/2H2(g) ⇌ NH3(g) =>K' = [tex]\sqrt{K}[/tex]
K' = [tex]\sqrt{1.3*10^-2}[/tex] = 0.11
b. 2NH3(g) ⇌ N2(g) + 3H2(g)
N2(g) + 3H2(g) ⇌ 2NH3
2NH3(g) ⇌ N2(g) + 3H2(g) =>K' = 1/K
K' = 1/(1.3*10^-2) = 76.9
c. NH3(g) ⇌ 1/2 N2(g) + 3/2H2(g)
N2(g) + 3H2(g) ⇌ 2NH3
NH3(g) ⇌ 1/2 N2(g) + 3/2H2(g)
=>K' = [tex]\frac{1}{\sqrt{K} }[/tex]
K' = [tex]\frac{1}{\sqrt{1.3*10^-2} }[/tex]
K' = 8.8
d. 2N2(g) + 6H2(g) ⇌ 4NH3(g)
N2(g) + 3H2(g) ⇌ 2NH3
2N2(g) + 6H2(g) ⇌ 4NH3(g)
K' = K²
K' = (1.3*10^-2)²
K' = 1.7 *10 ^-4
Values of equilibrium constant at given temperature for the following reactions are 0.11, 76.9, 8.8 and 1.7 × 10⁻⁴ respectively.
How we calculate equilibrium constant?Equilibrium constant is define as the ration of the concentrations of product to the concentrations of reactant with respect to the exponent of their coefficients.
Given chemical reaction is:
N₂(g) + 3H₂(g) ⇌ 2NH₃(g)
Equilibrium constant for this reaction is:
K = [NH₃]² / [N₂][H₂]³
K = 1.3 × 10⁻² (given)
Equilibrium constant K₁ for below reaction will be written as:1/2N₂(g) + 3/2H₂(g) ⇌ NH₃(g)
K₁ = √K
Because concentration of all given species is 1/2 of the given reaction, so value of K₁ will be written as:
K₁ = √(1.3 × 10⁻²) = 0.11
2NH₃(g) ⇌ N₂(g) + 3H₂(g)
K₂ = 1/K
Because concentration of reactant and products are reciprocal from the concentration of original given reaction, so value of K₂ will be written as:
K₂ = 1/1.3 × 10⁻² = 76.9
NH₃(g) ⇌ 1/2N₂(g) + 3/2H₂(g)
K₃ = 1/√K
Because concentrations of given species is reciprocal as well as half of the given original reaction, so value of K₃ will be written as:
K₃ = 1/√(1.3 × 10⁻²) = 8.8
2N₂(g) + 6H₂(g) ⇌ 4NH₃(g)
K₄ = K²
Because concentrations of given species is double of the given original reaction, so value of K₄ will be written as:
K₄ = (1.3 × 10⁻²)² = 1.7 × 10⁻⁴
Hence, the value of K for given reactions are 0.11, 76.9, 8.8 and 1.7 × 10⁻⁴ respectively.
To know more about equilibrium constant, visit the below link:
https://brainly.com/question/12858312
Place the following in order of increasing molar entropy at 298 K.
a. C3H8 < SO < CO2
b. CO2 < C3H8 < SO
c. C3H8 < CO2 < SO
d. SO < CO2 < C3H8
e. CO2 < SO < C3H8
Answer:
SO < CO2 < C3H8
Explanation:
Entropy refers to the degree of disorderliness of a system. The standard molar entropy of a substance refers to the entropy of 1 mole of the substance vunder standard conditions.
The molar entropy depends on the number of microstates in the system which in turn depends on the number of atoms in the molecule.
C3H8 has 11 atoms and hence the highest number of microstates followed by CO2 having three atoms and least of all SO having only two atoms.
How many moles are in 18.2 g of CO2?
41.4 moles
801 moles
0.414 moles
0 2.42 moles
Answer:
0.414 mole (3 sig. figs.)
Explanation:
Given grams, moles = mass/formula weight
moles in 18.2g CO₂(g) = 18.2g/44g/mole = 0.413636364 mole (calc. ans.)
≅ 0.414 mole (3 sig. figs.)
1. When the following oxidation-reduction reaction in acidic solution is balanced, what is the
lowest whole-number coefficient for Rb*(aq)?
Rb(s) + Sr?+(aq) → Rb+ (aq) + Sr(s)
For each amino acid, the name, three-letter abbreviation, or one-letter abbreviation is given. Complete the missing information name: proline three-letter abbreviation: one-letter abbreviation: Select the class (side chain) for proline. name: three-letter abbreviation: Phe name: three-letter abbreviation: Phe one-letter abbreviation: Select the class (side chain) for Phe. name: three-letter abbreviation: name: three-letter abbreviation: one-letter abbreviation: D Select the class (side chain) for D. nathe: lysine three-letter abbreviation: latihan aidantului one-letter abbreviation: Select the class (side chain) for lysine. name: three-letter abbreviation: Gin one-letter abbreviation: Select the class (side chain) for Gln.
17. Which of the following is a device that generates electricity using a chemical reaction?
O A. Fuel cell
B. Battery
C. Charging station
O D. Solar panel
Answer:
Hydrogen and fuel cell technologies power cars, buildings and more. But how ... Test your knowledge with this quiz! ... How do fuel cells generate electricity
Answer:
A
Explanation:
fuel cell is a device that converts the chemical energy from fuel into electricity via a chemical reaction with oxygen or another oxidizing agent. Batteries work in a closed system, while fuel cells require their reactants to be replenished.
At 35°C, K = 1.6 × 10^-5 for the reaction
2 NOCl(g) ⇌ 2 NO(g) + Cl2(g)
Calculate the concentrations of all species at equilibrium for each of the following original mixtures.
a. 2.0 mol pure NOCl in a 2.0 L flask
b. 2.0 mol NOCl and 1.0 mol Cl2 in a 1.0 L flask
Answer:
a) [NOCl] = 0.968 M
[NO] = 0.032M
[Cl²] = 0.016M
b) [NOCl] = 1.992M
[NO] = 0.008 M
[Cl2] = 1.004 M
Explanation:
Step 1: Data given
Temperature = 35°C = 308K
K = 1.6 × 10^-5
Step 2: The reaction
2 NOCl(g) ⇌ 2 NO(g) + Cl2(g)
For 2 moles NOCl we'll have 2 moles NO and 1 mol Cl2
Step 3
a. 2.0 mol pure NOCl in a 2.0 L flask
Concentration at the start:
Concentration = mol / volume
[NOCl] = mol / volume
[NOCl] = 2.0 / 2.0 L
[NOCl] = 1.0 M
[NO] = 0 M
[Cl] = 0M
Concentration at the equillibrium
[NOCl] = 1.0M - 2x
[NO] = 2x
[Cl2]= x
K = [Cl2][NO]² / [NOCl]² = 1.6*10^-5
1.6*10^-5 = ((2x)² * x) / (1.0-2x)²
x = 0.016
[NOCl] = 1.0 - 2*0.016 = 0.968 M
[NO] = 2*0.016 = 0.032M
[Cl²] = 0.016M
b. 2.0 mol NOCl and 1.0 mol Cl2 in a 1.0 L flask
Concentration at the equillibrium
[NOCl] = 2.0 mol / 1.0 L = 2.0 M
[NO] = 0 M
[Cl2]= 1.0 mol / 1.0 L = 1.0 M
Concentration at the equillibrium
[NOCl] = 2.0M - 2x
[NO] = 2x
[Cl2]= 1.0 + x
K = [Cl2][NO]² / [NOCl]² = 1.6*10^-5
1.6 *10^-5 = (2x)²*(1.0+x) / ((2.0-2x)²)
1.6 *10^-5= (2x)² * 1 )/2.0²
1.6 *10^-5= 4x² / 4 = x²
x = [tex]\sqrt{1.6 *10^-5}[/tex] = 4.0*10^-3
[NOCl] = 2.0 - 2*0.004 = 1.992M
[NO] = 2*0.004 = 0.008 M
[Cl2] = 1+ 0.004M = 1.004 M
define reaction rate
Answer:
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically.
Which best illustrates the way in which radiation transfers thermal energy?
O
Warr
Cool
o
Warm
Cool
Warm
Cool
Warm
H11
Cool
Answer:
It is so because heat is flowing from hot body to cold body, and there is no direct contact between the body. It explains correctly the mode of transmission of thermal energy through the process of radiations.
Explanation:
Fun fact:
How does thermal energy transfer by radiation?
Radiation. All objects transfer energy to their surroundings by infrared radiation . The hotter an object is, the more infrared radiation it gives off. No particles are involved in radiation, unlike conduction.
Help for both questions please and thanks
Answer:
hey can you re post this and zoom in i can see what it say its not allowing me to zoom thx
Explanation:
H2SO4 là axit hay bazơ
Explanation:
Question 6
Based on your observations, what conclusion can you draw about the lengths of AD, DB, AE, and EC?
Answer: The ratio of AD to DB is equal to the ratio of AE to EC. In other words, the pairs of lengths are proportional.
Explanation:
Sample answer from plato
Answer:
The pairs of lengths are proportional, because, the ratios of AD and DB are the exact same, so they are equal to the ratios of the set AE and EC.
Explanation:
It is rewritten from a sample answer from Plato just to be safe from plagiarism.
All of the different types of electromagnetic radiation (light, x-rays, ultraviolet
radiation, and so on) make up the
atomic spectrum
electromagnetic spectrum.
sunlight
spectral lines,
Answer:
bleh
Explanation:
Exercise 2: (7 points)
Augmentin
Augmentin is a drug formed by amoxicillin of molecular formula C16H19N3O5S.3H20 and molar mass 419 g.mol"! Augmenting is used to treat infections caused by certain bacteria. The normal dose is 500mg of tablet each 12 hours. The maximum dose is 40g of Augmentin for 10 days. Augmentin generally has a normal action; a high dose (overdose) in Augmentin causes kidney problems.
1) Explain in which case we use Augmentin. 2) 2.1) Il a patients dissolved in the water an Augmentin tablet of 500mg to prepare a 100ml solution, determine the mass concentration and molar concentration of the obtained solution 2.2) Write the procedures followed to prepare this solution and indicate the materials used in this preparation.
3) If a patient takes daily 100ml of Augmentin solution of concentration 50g L for 10 days, will he suffer from kidney problems?
Answer:
See explanation
Explanation:
I) from the question;
500 × 10^-3 g dissolves in 100ml
xg dissolves in 1000ml
x = 500 × 10^-3 g × 1000ml/100 ml
x= 5 g/L
Mass concentration = molar concentration × molar mass
Molar concentration = Mass concentration/ molar mass
Molar concentration = 5g/L/419 g/mol
Molar concentration = 0.0119 M
ii) To prepare this solution, measure out 500mg with a weighing balance. Transfer the solid to a standard 100 ml volumetric flask. Make up to the 100ml mark with distilled water.
iii) mass concentration of the solution = 50 g/L
Volume of the solution= 100 ml
Mass of the solid = 50 g/L × 100/1000 L
Mass of solid = 5g
This 5g was taken for 10 days, hence a total of 50 g
Since the normal dose of the drug is 40g for ten days, the patient will suffer from kidney problems because he/she has taken the drug above the recommended dosage.
Answer this please t
Lol
Answer: trial b
Explanation:
Group 17 elements (for example, chlorine) in the periodic table are known as
alkali metals.
• halogens.
noble gases.
transition metals.
Explanation:
The answer is halogens
Halogens are reactive non metallic elements that form strongly acidic compounds with Hydrogen to form simple salts
7. Which shows a way to represent a single covalent bond between atoms?
Ο Η + Η
Ο H/H
Ο HH
Explanation:
A single covalent bond can be represented by a single line between the two atoms. For instance, the diatomic hydrogen molecule, H2, can be written as H—H to indicate the single covalent bond between the two hydrogen atoms.
A 11.79 g sample of Mo2O3(s) is converted completely to another molybdenum oxide by adding oxygen. The new oxide has a mass of 14.151 g . Add subscripts to correctly identify the empirical formula of the new oxide.
Answer:
MoO₃
Explanation:
To solve this question we must find the moles of molybdenum in Mo2O3. The moles of Mo remain constant in the new oxide. With the differences in masses we can find the mass of oxygen and its moles obtaining the empirical formula as follows:
Moles Mo2O3 -Molar mass: 239,878g/mol-
11.79g * (1mol / 239.878g) = 0.04915 moles Mo2O3 * (2mol Mo / 1mol Mo2O3) = 0.09830 moles Mo
Mass Mo in the oxides:
0.09830 moles Mo * (95.95g/mol) = 9.432g Mo
Mass oxygen in the new oxide:
14.151g - 9.432g = 4.719g oxygen
Moles Oxygen:
4.719g oxygen * (1mol/16g) = 0.2949 moles O
The ratio of moles of O/Mo:
0.2949molO / 0.09830mol Mo = 3
That means there are 3 moles of oxygen per mole of Molybdenum and the empirical formula is:
MoO₃1. What are the characteristics of a gas?
Answer:
Gases have three characteristic properties: (1) they are easy to compress, (2) they expand to fill their containers, and (3) they occupy far more space than the liquids or solids from which they form.
A beaker contains a 25 mL solution of an unknown monoprotic acid that reacts in a 1:1 stochiometric ratio with NaOH. Titrate the solution with NaOH to determine the concentration of the acid.Perform a titration by setting the concentration of the NaOH solution and adding it to the acid solution using the different Add Base buttons.The equivalence point of the titration is passed when the solution color changes.The unknown sample can be titrated multiple times by pressing the Retitrate button and starting over.Enter the concentration of the unknown acid solution.The base is 20.05 mL with 1.000 M
Answer:
0.80 M
Explanation:
Step 1: Write the generic neutralization reaction
HA + NaOH ⇒ NaA + H₂O
Step 2: Calculate the reacting moles of NaOH
20.05 mL of 1.000 M NaOH react.
0.02005 L × 1.000 mol/L = 0.02005 mol
Step 3: Calculate the reacting moles of HA
The molar ratio of NaOH to HA is 1:1. The reacting moles of HA is 1/1 × 0.02005 mol = 0.02005 mol.
Step 4: Calculate the concentration of HA
0.02005 moles of HA are in 25 mL.
[HA] = 0.02005 mol/0.025 L = 0.80 M
does light appears to travel in straight lines. travelling from light sources until it hits the surface of an object?? (Truer or False) if your answer is true then what is the reason why does light appears to travel in straight lines??.
Answer:
true once light has been produce it will keep travelling jn straight parts until it hits something else
1. When the following oxidation-reduction reaction in acidic solution is balanced, what is the
lowest whole-number coefficient for Rb*(aq)?
Rb(s) + Sr?+(aq) → Rb+ (aq) + Sr(s)
Answer:
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
Explanation:
Rubidium has a more negative reduction potential (-2.98 V) compared to strontium (-2.89 V).
Hence, in a redox reaction involving rubidium and strontium, rubidium will be oxidized while strontium is reduced.
The balanced redox reaction equation is obtained from;
Oxidation half equation;
2Rb(s) ---->2Rb^+(aq) + 2e
Reduction half equation;
Sr^2+(aq) + 2e ----> Sr(s)
Overall reaction equation;
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
How many moles of CO2 exert a pressure of 2.34atm at a volume of 25.6L and a temperature of 305k?
Answer:
2.39 moles
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 2.34 atm
Volume (V) = 25.6 L
Temperature (T) = 305 K
Number of mole (n) =?
NOTE: Gas constant (R) = 0.0821 atm.L/Kmol
The number of mole of CO₂ can be obtained by using the ideal gas equation as shown below:
PV = nRT
2.34 × 25.6 = n × 0.0821 × 305
59.904 = n × 25.0405
Divide both side by 25.0405
n = 59.904 / 25.0405
n = 2.39 moles
Thus, the number of mole of CO₂ is 2.39 moles.
Answer:
2.39
Explanation:
got it right on a quiz for credit recovery