Find the area of the semicircle.​

Find The Area Of The Semicircle.

Answers

Answer 1

Answer:

39.25 centimeters squared is the area of the semicircle


Related Questions

find the relationship of the fluxions using newton's rules for the equation y^2-a^2-x√(a^2-x^2 )=0. put z=x√(a^2-x^2 ).

Answers

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex] is the relationship between the fluxions for the given equation, using Newton's rules.

Isaac Newton created a primitive type of calculus called fluxions. Newton's Fluxion Rules were a set of guidelines for employing fluxions to find the derivatives of functions. These guidelines served as a crucial foundation for the modern conception of calculus and paved the path for the creation of the derivative.

To find the relationship of the fluxions using Newton's rules for the equation[tex]y^2-a^2-x\sqrt{√(a^2-x^2 )} =0[/tex], we first need to express z in terms of x and y. We are given that z=x√(a^2-x^2 ), so we can write:

[tex]z' = (\sqrt{(a^2-x^2 )} -x^2/\sqrt{(a^2-x^2 ))} y' + x/\sqrt{(a^2-x^2 )}  * (-2x)[/tex]

Next, we can use Newton's rules to find the relationship between the fluxions:

y/y' = -Fz/Fy = -(-2z) / (2y) = z/y

y' = z'/y - z/y^2 * y'

Substituting the expressions for z and z' that we found earlier, we get:

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex]

This is the relationship between the fluxions for the given equation, using Newton's rules.


Learn more about Newton here:

https://brainly.com/question/11221441


#SPJ11

z=f(x,y)
x= r3 s
y= re2s
(a) Find ∂z/∂s (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y .
(b) Find ∂2z/∂s∂r (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y , ∂2z/∂x2, ∂2z/∂x∂y , and ∂2z/∂y2).
Expert A

Answers

(a) To find ∂z/∂s, we can use the chain rule. Let's start by finding the partial derivatives ∂x/∂s and ∂y/∂s:

∂x/∂s = ∂(r^3s)/∂s = r^3

∂y/∂s = ∂(re^2s)/∂s = re^2s * 2 = 2re^2s

Now, using the chain rule, we have:

∂z/∂s = (∂z/∂x) * (∂x/∂s) + (∂z/∂y) * (∂y/∂s)

So, ∂z/∂s = (∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s

(b) To find ∂2z/∂s∂r, we can differentiate ∂z/∂s with respect to r. Using the product rule, we have:

∂2z/∂s∂r = (∂/∂r)[(∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s]

Taking the derivative of (∂z/∂x) * r^3 with respect to r gives us:

(∂/∂r)[(∂z/∂x) * r^3] = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3

Taking the derivative of (∂z/∂y) * 2re^2s with respect to r gives us:

(∂/∂r)[(∂z/∂y) * 2re^2s] = (∂z/∂y) * 2e^2s

Therefore, ∂2z/∂s∂r = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3 + (∂z/∂y) * 2e^2s.

Note: The expressions (∂z/∂x), (∂z/∂y), (∂^2z/∂x^2), and (∂^2z/∂x∂y), (∂^2z/∂y^2) are not provided in the given information and would need to be given or calculated separately to obtain a specific numerical result.

Learn more about differentiate here: brainly.com/question/32388323

#SPJ11

Consider the following. f(x) = x x - 7, a = 8 Verify that f has an inverse function. Ofis one-to-one O the domain of fis all real numbers O fhas exactly one minimum O the range of fis all real numbers O fhas exactly one maximum Then use the function f and the given real number a to find (t-1)(a). (Hint: Use Theorem 5.9.) (-1)(a) =

Answers

To verify whether the function f(x) = [tex]x^{2}[/tex]- 7 has an inverse function, we need to determine if it is a one-to-one function. An inverse function or an anti function is defined as a function, which can reverse into another function

A function is one-to-one if it passes the horizontal line test, meaning that no two distinct points on the graph of the function have the same y-coordinate. In this case, f(x) = [tex]x^{2}[/tex]- 7 is a parabolic function that opens upward and has a minimum point. Since the parabola opens upward, it is not one-to-one. Therefore, f(x) = [tex]x^{2}[/tex] - 7 does not have an inverse function. Now, to find (t-1)(a), we can use Theorem 5.9, which states that if a function f has an inverse function g, then f(g(x)) = x for every x in the domain of g. Since f does not have an inverse function, we cannot directly use this theorem. Hence, we cannot find (t-1)(a) using the given function f and the real number a because f does not have an inverse function.

Learn more about inverse function Here:

https://brainly.com/question/29141206

#SPJ11

use the fundamental theorem of calculus, part 2 to evaluate ∫1−1(t3−t2)dt.

Answers

Using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To use the fundamental theorem of calculus, part 2 to evaluate the integral ∫1−1(t3−t2)dt, we first need to find the antiderivative of the integrand. To do this, we can apply the power rule of calculus, which states that the antiderivative of x^n is (x^(n+1))/(n+1) + C, where C is the constant of integration. Using this rule, we can find the antiderivative of t^3 - t^2 as follows:
∫(t^3 - t^2)dt = ∫t^3 dt - ∫t^2 dt
= (t^4/4) - (t^3/3) + C
Now that we have found the antiderivative, we can use the fundamental theorem of calculus, part 2, which states that if F(x) is an antiderivative of f(x), then ∫a^b f(x)dx = F(b) - F(a). Applying this theorem to the integral ∫1−1(t3−t2)dt, we get:
∫1−1(t3−t2)dt = (1^4/4) - (1^3/3) - ((-1)^4/4) + ((-1)^3/3)
= (1/4) - (1/3) - (1/4) - (-1/3)
= -1/6
Therefore, using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To know more about calculus visit :

https://brainly.com/question/30761130

#SPJ11

Suppose two equally probable one-dimensional densities are of the form: p(x|ωi)∝e-|x-ai|/bi for i= 1,2 and b >0.
(a) Write an analytic expression for each density, that is, normalize each function for arbitrary ai, and positive bi.
(b) Calculate the likelihood ratio p(x|ω1)/p(x|ω2) as a function of your four variables.

Answers

The likelihood ratio can be expressed as:

p(x|ω1)/p(x|ω2) =

(b2/b1) * e^(-(x - a1) + (x - a2)/(b1*b2)) if x >= (a1+a2)/2

(b2/b1) * e^((x - a1) - (x

To normalize each density function, we need to find the appropriate normalization constants. Let's consider each density function separately:

For p(x|ω1):

p(x|ω1) ∝ e^(-|x-a1|/b1)

To normalize this function, we need to find the constant C1 such that the integral of p(x|ω1) over the entire range is equal to 1:

1 = ∫ p(x|ω1) dx

= C1 ∫ e^(-|x-a1|/b1) dx

Since the integral involves an absolute value, we can split it into two parts:

1 = C1 ∫[a1-∞] e^(-(x-a1)/b1) dx + C1 ∫[a1+∞] e^(-(a1-x)/b1) dx

Simplifying each integral separately:

1 = C1 ∫[a1-∞] e^(-x/b1) dx + C1 ∫[a1+∞] e^(-x/b1) dx

To evaluate these integrals, we can use the fact that the integral of e^(-x/b) dx from -∞ to ∞ is equal to 2b:

1 = C1 (2b1)

Therefore, the normalization constant C1 is 1/(2b1), and the normalized density function p(x|ω1) is:

p(x|ω1) = (1/(2b1)) * e^(-|x-a1|/b1)

Similarly, for p(x|ω2), we have:

p(x|ω2) ∝ e^(-|x-a2|/b2)

To normalize this function, we need to find the constant C2 such that the integral of p(x|ω2) over the entire range is equal to 1:

1 = C2 ∫ p(x|ω2) dx

= C2 ∫ e^(-|x-a2|/b2) dx

Following the same steps as before, we find that the normalization constant C2 is 1/(2b2), and the normalized density function p(x|ω2) is:

p(x|ω2) = (1/(2b2)) * e^(-|x-a2|/b2)

(b) The likelihood ratio p(x|ω1)/p(x|ω2) can be calculated as follows:

p(x|ω1)/p(x|ω2) = [(1/(2b1)) * e^(-|x-a1|/b1)] / [(1/(2b2)) * e^(-|x-a2|/b2)]

Simplifying:

p(x|ω1)/p(x|ω2) = (b2/b1) * e^((|x-a1| - |x-a2|)/(b1*b2))

We can further simplify the exponent term by considering the absolute value difference:

|x-a1| - |x-a2| =

(x - a1) + (x - a2) if x >= (a1+a2)/2

(x - a1) - (x - a2) if x < (a1+a2)/2

Know more about likelihood ratio here:

https://brainly.com/question/31539711

#SPJ11

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. How many commercials did Lee see last night?

Answers

Therefore, the number of commercials Lee saw last night is x + 20.

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. Let the number of commercials Lee watched last week be x.

Now we have to determine the number of commercials Lee watched last night when he saw 20 more commercials than he did on the night he watched the most TV last week. If we let the number of commercials Lee watched last week be x, then the number of commercials Lee saw last night can be written as:

x + 20

The above expression is equivalent to 20 more commercials than the number of commercials Lee saw last week. Therefore, the answer is x + 20.

Now we can calculate the value of x by using the information provided in the question. If we subtract 20 from the number of commercials Lee saw last night, we should get the number of commercials he saw last week, that is:

x = (x + 20) - 20x

= x

Therefore, we can see that there is no unique solution for the number of commercials Lee saw last night. It all depends on the value of x, the number of commercials Lee watched last week. If we know this value, we can easily calculate the number of commercials Lee saw last night.

To know more about marathon visit:

https://brainly.com/question/19869274

#SPJ11

(1 point) Consider the initial value problem
y′′+4y=−, y(0)=y0, y′(0)=y′0.y′′+4y=e−t, y(0)=y0, y′(0)=y0′.
Suppose we know that y()→0y(t)→0 as →[infinity]t→[infinity]. Determine the solution and the initial conditions.

Answers

The solution to the differential equation with the given initial conditions is: y(t) = y_0 cos(2t) + (y_0' + 1)/2 sin(2t) - [tex]e^{(-t)[/tex]

To solve the differential equation, we first find the homogeneous solution by setting the right-hand side to zero:

y'' + 4y = 0

The characteristic equation is [tex]r^2 + 4 = 0[/tex], which has roots r = ±2i. Therefore, the general solution to the homogeneous equation is:

y_h(t) = c_1 cos(2t) + c_2 sin(2t)

where c_1 and c_2 are constants determined by the initial conditions.

Next, we find the particular solution to the non-homogeneous equation. Since the right-hand side is e^(-t), we guess a particular solution of the form:

y_p(t) = A[tex]e^{(-t)[/tex]

where A is a constant to be determined. Substituting this into the differential equation, we have:

[tex]Ae^{(-t)} - 2Ae^{(-t) }+ 4Ae^{(-t) }= -e^{(-t)[/tex]

Simplifying, we get:

[tex]Ae^{(-t) }= -e^{(-t)[/tex]

which implies A = -1. Therefore, the particular solution is:

[tex]y_p(t) = -e^{(-t)[/tex]

The general solution to the non-homogeneous equation is the sum of the homogeneous and particular solutions:

y(t) = y_h(t) + y_p(t) = c_1 cos(2t) + c_2 sin(2t) -[tex]e^{(-t)[/tex]

Using the initial conditions y(0) = y_0 and y'(0) = y_0', we get:

y(0) = c_1 = y_0

y'(0) = 2c_2 - [tex]e^{(-0)[/tex] = y_0'

Therefore, we have:

c_1 = y_0

c_2 = (y_0' + 1)/2

for such more question on differential equation

https://brainly.com/question/25731911

#SPJ11

correctly rounded, 20.0030 - 0.491 g =

Answers

The calculation for correctly rounded 20.0030 - 0.491 g is as follows:

20.0030
- 0.491
= 19.5120

To correctly round this answer, we need to consider the significant figures of the original values. The value 20.0030 has five significant figures, while 0.491 has only three. Therefore, the answer should be rounded to three significant figures, which gives us:

19.5 g


When subtracting values with different significant figures, the answer should be rounded to the least number of significant figures in either value. In this case, the value 0.491 has only three significant figures, so the answer should be rounded to three significant figures.


The correctly rounded answer for 20.0030 - 0.491 g is 19.5 g. It is important to consider the significant figures when rounding the answer, as this ensures that the result is accurate and precise.

Tyo know more about significant figures visit:

https://brainly.com/question/29153641

#SPJ11

A, B, C, D, E, F, G & H form a cuboid. AB = 5.8 cm, BC = 2 cm & CG = 8.5 cm. Find ED rounded to 1 DP.

Answers

The value of length ED in the cuboid is determined as 8.7 cm.

What is the value of length ED?

The value of length ED is calculated as follows;

The line connecting point E to point D is a diagonal line, and the magnitude is calculated by applying Pythagoras theorem as follows;

ED² = AE² + AD²

From the diagram, AE = CG = 8.5 cm,

also, length AD = BC = 2 cm

The value of length ED is calculated as;

ED² = 8.5² + 2²

ED = √ ( 8.5² + 2²)

ED = 8.7 cm

Thus, the length of ED is determined by applying Pythagoras theorem as shown above.

Learn more about lengths of cuboid here: https://brainly.com/question/12858919

#SPJ1

the four walls and ceiling of a room are to be painted with five colors available. how many ways can this be done if bordering sides of the room must have different colors?

Answers

The required answer is  600 different ways to paint the room under the given conditions.

To paint the four walls and ceiling of a room with five colors available, ensuring bordering sides have different colors, follow these steps:

1. Choose a color for the first wall: You have 5 color options.
2. Choose a color for the second wall: Since it must be different from the first wall, you have 4 color options.
3. Choose a color for the third wall: It must be different from both the first and second walls, so you have 3 color options.
4. Choose a color for the fourth wall: It must be different from the first, second, and third walls, so you have 2 color options.
5. Choose a color for the ceiling: It can be any of the 5 colors, as it does not border any wall directly.

To calculate the total number of ways to paint the room, multiply the number of options for each step:

5 (first wall) * 4 (second wall) * 3 (third wall) * 2 (fourth wall) * 5 (ceiling) = 600 ways

So, there are 600 different ways to paint the room under the given conditions.

To know more about permutation and combination. Click on the link.

https://brainly.com/question/13387529

#SPJ11

a test of h0:μ=μ0versus h1:μ<μ0resulted in a test statistic of z=1.62. which one of the following standard normal areas equals the p-value of this test?

Answers

Based on your question, you have conducted a one-tailed hypothesis test with the null hypothesis (H0) stating that the population mean (μ) is equal to a specified value (μ0), and the alternative hypothesis (H1) stating that the population mean is less than the specified value. The test statistic (z) is 1.62.

To find the p-value for this one-tailed test, you need to look up the area to the left of z = 1.62 in a standard normal distribution table or use a calculator. The p-value corresponds to the probability of observing a test statistic as extreme or more extreme than the one calculated, given that the null hypothesis is true.

For a one-tailed test with z = 1.62, the p-value is equal to the area to the right of z, which is 1 - P(Z ≤ 1.62). Using a standard normal table or calculator, we find P(Z ≤ 1.62) ≈ 0.9474. Thus, the p-value is 1 - 0.9474 = 0.0526.

Learn more about test statistic: https://brainly.com/question/15110538

#SPJ11

The melting points of two alloys used in formulating solder were investigated by melting 21 samples of each material. The sample mean and standard deviation for alloy 1 was X1= 420. 48 and S1= 2. 34. And for alloy 2 they were X2= 425 and S2=32. 5a. Do the sample data support the claim that both alloys have the same melting point? Use a fixed-level test at alpha =. 05 and assume that both populations are normally distributed and have the same standard deviation. B. Find the P-Value for this test

Answers

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

To test the claim that both alloys have the same melting point, we can perform a two-sample t-test. Here's how we can approach it:

a. Hypotheses:

The null hypothesis (H0) is that the means of both alloys are equal.

The alternative hypothesis (Ha) is that the means of both alloys are not equal.

H0: μ1 = μ2

Ha: μ1 ≠ μ2

b. Test statistic:

Since the sample sizes are relatively small (n1 = n2 = 21) and the population standard deviation is unknown, we can use the two-sample t-test. The test statistic is given by:

t = (X1 - X2) / sqrt(Sp^2 * (1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp^2 is the pooled sample variance.

c. Pooled sample variance:

Sp^2 = ((n1 - 1) * S1^2 + (n2 - 1) * S2^2) / (n1 + n2 - 2)

d. Calculating the test statistic:

Substituting the given values:

X1 = 420.48, S1 = 2.34, X2 = 425, S2 = 32.5, n1 = n2 = 21

Sp^2 = ((21 - 1) * 2.34^2 + (21 - 1) * 32.5^2) / (21 + 21 - 2)

Sp^2 = 616.518

t = (420.48 - 425) / sqrt(616.518 * (1/21 + 1/21))

t ≈ -2.061

e. Degrees of freedom:

The degrees of freedom for the two-sample t-test is given by (n1 + n2 - 2), which in this case is (21 + 21 - 2) = 40.

f. Critical value:

With a significance level of α = 0.05 and 40 degrees of freedom, we find the critical t-value using a t-table or statistical software. Let's assume it to be ±2.021 for a two-tailed test.

g. Decision:

Since |t| = 2.061 > 2.021, we reject the null hypothesis.

h. P-value:

To find the p-value, we compare the absolute value of the test statistic (|t| = 2.061) with the critical t-value. If the p-value is less than the significance level (α = 0.05), we reject the null hypothesis. In this case, the p-value is approximately 0.045.

Therefore, the final answer is:

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

Visit here to learn more about p-value:

brainly.com/question/30461126

#SPJ11

p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

a) To test the hypothesis that both alloys have the same melting point, we can use a two-sample t-test with pooled variance since we are assuming equal variances. The null hypothesis is that the difference in mean melting points is zero:

H0: μ1 - μ2 = 0

Ha: μ1 - μ2 ≠ 0

where μ1 and μ2 are the true mean melting points of alloys 1 and 2, respectively.

The test statistic is calculated as:

t = (X1 - X2) / (Sp * sqrt(1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp is the pooled standard deviation:

Sp = sqrt(((n1 - 1)*S1^2 + (n2 - 1)*S2^2) / (n1 + n2 - 2))

Substituting the given values, we get:

Sp = sqrt(((21 - 1)*2.34^2 + (21 - 1)*32.5^2) / (21 + 21 - 2)) = 17.896

t = (420.48 - 425) / (17.896 * sqrt(1/21 + 1/21)) = -2.56

Using a t-table with 40 degrees of freedom (df = n1 + n2 - 2), the critical values for a two-tailed test at alpha = 0.05 are ±2.021. Since |-2.56| > 2.021, the test statistic falls in the rejection region. Therefore, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

b) The p-value for this test is the probability of observing a test statistic more extreme than the one we calculated, assuming the null hypothesis is true. Since this is a two-tailed test, we need to calculate the probability of observing a t-value less than -2.56 or greater than 2.56 with 40 degrees of freedom.

Using a t-table or a t-distribution calculator, we get a p-value of approximately 0.014.

Learn more about null hypothesis at: brainly.com/question/28098932

#SPJ11

Describe the pattern in each table write your answers on the line.

Answers

For question 1.) Progressive increase in y leads to increase in X simultaneously by 1

For question 2.) 1 pint of a solution is equivalent to 2 cups of same solution.

For question 3.) Progressive increase in number of postage leads to increase in total cost price by 1.

For question 4.) Every 30 students are to be taught by 1 teacher.

How to determine the patterns that describes the given tables above?

For table 1.)

When X = 5 , y = 1

X = 6, y = 2

X = 7, y = 3

Therefore, progressive increase in y leads to increase in X simultaneously by 1.

For table 2.)

1 pints of a solution = 2 cups

2 pints of a solution = 4 cups

Therefore, 1 pint of a solution is equivalent to 2 cups of same solution.

For table 3.)

Progressive increase in number of postage leads to increase in total cost price by 1.

For question 4.)

3 teachers = 90 students

1 teacher = 90×1/3 = 30 students.

Therefore, Every 30 students are to be taught by 1 teacher.

Learn more about division here:

https://brainly.com/question/28749372

#SPJ1

Exercise 7.28. Let X1, X2, X3 be independent Exp(4) distributed random vari ables. Find the probability that P(XI < X2 < X3).

Answers

The probability that P(X1 < X2 < X3) is 1/8.

We can solve this problem using the fact that if X1, X2, X3 are independent exponential random variables with the same rate parameter λ, then the joint density function of the three variables is given by:

f(x1, x2, x3) = λ^3 e^(-λ(x1+x2+x3))

We want to find the probability that X1 < X2 < X3. We can express this event as the intersection of the following three events:

A: X1 < X2

B: X2 < X3

C: X1 < X3

Using the joint density function above, we can compute the probability of each of these events using integration. For example, the probability of A is:

P(X1 < X2) = ∫∫ f(x1, x2, x3) dx1 dx2 dx3

= ∫∫ λ^3 e^(-λ(x1+x2+x3)) dx1 dx2 dx3 (integration over the region where x1 < x2)

= ∫ 0^∞ ∫ x1^∞ λ^3 e^(-λ(x1+x2+x3)) dx2 dx3 dx1

= ∫ 0^∞ λ^2 e^(-2λx1) dx1 (integration by substitution)

= 1/2

Similarly, we can compute the probability of B and C as:

P(X2 < X3) = 1/2

P(X1 < X3) = 1/2

Note that these probabilities are equal because the three exponential random variables are identically distributed.

Now, to compute the probability of the intersection of these events, we can use the multiplication rule:

P(X1 < X2 < X3) = P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A∩B)

Since A, B, and C are independent, we have:

P(B|A) = P(B) = 1/2

P(C|A∩B) = P(C) = 1/2

Therefore:

P(X1 < X2 < X3) = (1/2)(1/2)(1/2) = 1/8

Thus, the probability that X1 < X2 < X3 is 1/8.

To learn more about Probability

https://brainly.com/question/24870672

#SPJ11

The stray dog population in a local city is currently estimated to be 1,000. The expected annual rate of increase is predicted to be 0. 7. What will the population be in 4 years? Round your answer to the nearest whole number

Answers

We have been given that the stray dog population in a local city is currently estimated to be 1,000. The expected annual rate of increase is predicted to be 0.7.

We are supposed to find out what the population will be in 4 years. We can calculate this using the exponential growth formula.The exponential growth formula is given by,P = P₀(1 + r)n

Where, P₀ is the initial population r is the annual rate of increase expressed as a decimal I

n is the number of years P is the population after n years

Substituting the given values, we get,P = 1000(1 + 0.7)⁴

On simplifying this expression, we get,

P = 1000(1.7)⁴

P = 1000 × 3.2856P

≈ 3286

Therefore, the population will be approximately 3286 in 4 years. Hence, option C is the correct answer.

To know more about growth visit :-

https://brainly.com/question/30611694

#SPJ11

The area of this trapezium is 240cm2. Work out x.

Answers

trapezium's area is 240 cm².Let's also say that the two parallel sides of the trapezium are A and B.The height of the trapezium is x, according to the question.which is 0.5357 cms.

we know that the area of the trapezium is equal to: `1/2 (A + B) x`.

We can rearrange this equation to solve for x, which is what we're looking for.

A formula for `x` is as follows: `x = (2A + 2B) / (AB)`

We can now use this formula to solve for `x`. We'll start by using the values from the given question to plug into the formula. Let's say that side A is 16 cm and side B is 28 cm.Substitute the given values into the formula: `x = (2(16) + 2(28)) / (16(28))`x is then equal to `240 / 448`, or 0.5357 (rounded to 4 decimal places). Therefore, x is approximately equal to 0.5357 centimeters.

to know more area,visit:

https://brainly.com/question/30307509

#SPJ11

Two local ice cream shops are having promotions. The Tasty Cream is charging an $8 fee for their promotional card and $1. 50 per cone. The Ice Castle is charging a $3 fee for their promotional card and $2. 00 per cone. If you are planning on going to buy 7 ice cream cones for you and your friends, which ice cream shop should you choose and why?



A: Tasty Cream because they charge less per cone.


B: Ice castle because their promotional card is cheaper


C: Ice castle because they will charge you $1. 50 less than Tasty Cream for 7 cones


D: it doesn't matter which shop you go to because they will cost the same

Answers

Given below is the price list of two local ice cream shops: Tasty Cream is charging an $8 fee for their promotional card and $1.50 per cone Ice Castle is charging a $3 fee for their promotional card and $2.00 per cone.

The correct option is C: Ice castle because they will charge you $1. 50 less than Tasty Cream for 7 cones

According to the given information:

Now, if you want to buy 7 ice cream cones for you and your friends, then the total cost at Tasty Cream would be:

Cost of 7 cones = 7 × $1.50

= $10.50

Total cost = Cost of 7 cones + promotional card

= $10.50 + $8

= $18.50

Now, the total cost at Ice Castle would be:

Cost of 7 cones = 7 × $2.00

= $14.00

Total cost = Cost of 7 cones + promotional card

= $14.00 + $3.00

= $17.00

Thus, we can conclude that you should choose Ice Castle because they will charge you $1.50 less than Tasty Cream for 7 cones.

Hence, option (C) is the correct answer.

Note: Always remember that when comparing the prices of two shops, we must consider the total cost, not just the price per cone.

To know more about promotional card visit:

https://brainly.com/question/30093157

#SPJ11

River Racing is a company that provides inner tubes for children ond adults to float the river. The child lube has a diameter of 25 feet and the adult tube has a diameter of 3 feet. River Recing owns a total of 160 tubes ond the total diameter of all the tubes is 430 feet. Write o system to determine the number of child tubes, c, and number of adult tubes, a, Ino River Racing owns. ​

Answers

Let c represent the number of child tubes and a represent the number of adult tubes owned by River Racing. We can set up a system of equations based on the given information:

The total number of tubes: c + a = 160

The total diameter of all tubes: 25c + 3a = 430

The first equation represents the total number of tubes owned by River Racing, which is the sum of the child tubes (c) and adult tubes (a), and it equals 160.

The second equation represents the total diameter of all the tubes owned by River Racing. The diameter of each child tube is 25 feet, so the total diameter of the child tubes is 25c. The diameter of each adult tube is 3 feet, so the total diameter of the adult tubes is 3a. The sum of these two terms should equal 430 feet.

Therefore, the system of equations is:

c + a = 160

25c + 3a = 430

Solving this system of equations will give us the values for c (number of child tubes) and a (number of adult tubes) owned by River Racing.

Learn more about equations Visit : brainly.com/question/29174899

#SPJ11

If x i , i = 1, 2, 3, are independent exponential random variables with rates λi , i = 1, 2, 3, find (a) p{x1 < x2 < x3}, (b) p{x1 < x2| max(x1, x2, x3) = x3}, (c) e[maxxi|x1

Answers

If x i , i = 1, 2, 3, are independent exponential random variables with rates λi , i = 1, 2, 3, then

(a) P{x1 < x2 < x3} = P{x2 > x1} * P{x3 > x2} = (λ1 / (λ1 + λ2)) * (λ2 / (λ2 + λ3)) = λ1 / (λ1 + λ2) * λ2 / (λ2 + λ3)

(b) P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2} / e^(-(λ1+λ2)x3)

(c) E[max(xi) | x1 = a] = a + 1 / (λ1 + λ2 + λ3)

(a) To find the probability that x1 < x2 < x3, we can use the fact that the minimum of the three exponential random variables follows an exponential distribution with rate λ1 + λ2 + λ3. Therefore, we have:

P{x1 < x2 < x3} = P{x2 > x1} * P{x3 > x2} = (λ1 / (λ1 + λ2)) * (λ2 / (λ2 + λ3)) = λ1 / (λ1 + λ2) * λ2 / (λ2 + λ3)

(b) To find the probability that x1 < x2 given that max(x1, x2, x3) = x3, we can use Bayes' rule. We have:

P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2, x3 = max(x1, x2, x3)} / P{max(x1, x2, x3) = x3}

Since x3 is the maximum of the three variables, we have:

P{max(x1, x2, x3) = x3} = P{x1 ≤ x3} * P{x2 ≤ x3} = e^(-λ1x3) * e^(-λ2x3) = e^(-(λ1+λ2)x3)

Then, we can write:

P{x1 < x2, x3 = max(x1, x2, x3)} = P{x1 < x2, x3 = x3} = P{x1 < x2}

Therefore,

P{x1 < x2 | max(x1, x2, x3) = x3} = P{x1 < x2} / e^(-(λ1+λ2)x3)

(c) To find the expected value of the maximum xi, given that x1 = a, we can use the fact that the maximum of the exponential random variables follows an Erlang distribution with shape parameter k=3 and rate parameter λ1 + λ2 + λ3. Therefore, we have:

E[max(xi) | x1 = a] = a + 1 / (λ1 + λ2 + λ3)

This is because the Erlang distribution has a mean of k/λ, and in this case k=3 and λ=λ1+λ2+λ3. So, the expected value of the maximum is a plus one over the sum of the rates.

To know more about probability, refer to the link below:

https://brainly.com/question/31476167#

#SPJ11

Find the domain of the function p(x)=square root 17/x+5

Answers

the domain of the function p(x) = √(17/(x + 5)) is all real numbers except x = -5.

In interval notation, the domain is (-∞, -5) U (-5, ∞).

To find the domain of the function p(x) = √(17/(x + 5)), we need to consider the values of x that make the expression inside the square root valid.

In this case, the expression inside the square root is 17/(x + 5). For the square root to be defined, the denominator (x + 5) cannot be zero because division by zero is undefined.

Therefore, we need to find the values of x that make the denominator zero and exclude them from the domain.

Setting the denominator (x + 5) equal to zero and solving for x:

x + 5 = 0

x = -5

So, x = -5 makes the denominator zero, which means it is not in the domain of the function.

To know more about function visit:

brainly.com/question/31062578

#SPJ11

The curved surface area of a cylinder is 1320cm2 and its volume is 2640cm2 find the radius

Answers

The radius of the cylinder is 2 cm.

Given, curved surface area of the cylinder = 1320 cm²,

Volume of the cylinder = 2640 cm³

We need to find the radius of the cylinder.

Let's denote it by r.

Let's first find the height of the cylinder.

Let's recall the formula for the curved surface area of the cylinder.

Curved surface area of the cylinder = 2πrhr = curved surface area / 2πh

= (curved surface area) / (2πr)

Substituting the values,

we get,

h = curved surface area / 2πr

= 1320 / (2πr) ------(1)

Let's now recall the formula for the volume of the cylinder.

Volume of the cylinder = πr²h

2640 = πr²h

Substituting the value of h from (1), we get,

2640 = πr² * (1320 / 2πr)

2640 = 660r

Canceling π, we get,

r² = 2640 / 660

r² = 4r = √4r

= 2 cm

Therefore, the radius of the cylinder is 2 cm.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

How do I set up this problem?

Nancy can paint a fence in 3 hours. It takes Ben 4 hours to do the same job. If they were to work together to paint a fence, approximately how many hours should it take?

Answers

If they work together, they would  work for 1 hour and 43 minutes

What do we do?

We know that the key step that we would have to take here is to convert the sentence that have been given to us to equations and that is how we can be able to obtain the parameters that we are looking for in the problem here.

As such;

Let x = time (hours) it takes for both

then;

x(1/3 + 1/4) = 1

If both of the sides can be multiplied by 12.

x(4 + 3) = 12

x(7) = 12

x = 12/7

x = 1.71 hours or 1 hour and 43 minutes

Learn more about equation:https://brainly.com/question/29657983

#SPJ1

a) if n-vectors x and y make an acute angle, then ∥x y∥ ≥ max{|x∥, ∥y∥}.

Answers

The statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

If two vectors x and y make an acute angle then it does not necessarily imply that the magnitude of their sum (represented as ∥x + y∥) is greater than or equal to the maximum magnitude between the individual vectors (represented as max{|x∥, ∥y∥}).

For illustrate this,

let's consider a counterexample. Suppose we have two vectors in two-dimensional space:

x = (1, 0)

y = (0, 1)

Both vectors, x and y, have a magnitude of 1 and are perpendicular to each other. Therefore, they form a right angle. However, the magnitude of their sum is:

[tex]∥x + y∥ = ∥(1, 0) + (0, 1)∥ = ∥(1, 1)∥ = \sqrt(2)[/tex]

On the other hand, the maximum magnitude between the individual vectors is

[tex]max{|x∥, ∥y∥} = max{|1|, |1|} = 1[/tex]

The magnitude of their sum (√2) is not greater than or equal to the maximum magnitude of the individual vectors (1).

Hence, the statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ4

evaluate the surface integral ∬s2xyz ds. where s is the cone with parametric equations x=ucos(v),y=usin(v),z=u and 0≤u≤4,0≤v≤π2.

Answers

To evaluate the surface integral ∬s2xyz ds, we first need to find the unit normal vector n and the magnitude of its cross product with the partial derivatives of x and y with respect to u and v. Using the given parametric equations, we can calculate n = (-2u cos(v), -2u sin(v), u), and the magnitude of the cross product to be 2u^2. Integrating over the surface of the cone, we get the final answer of 128/3π.

To evaluate the surface integral, we need to use the formula ∬s2F⋅dS = ∬D F(x(u,v),y(u,v),z(u,v))|ru×rv|dudv, where F(x,y,z) = (2xyz, 0, 0) and D is the region in the u-v plane that corresponds to the surface of the cone. We can find the unit normal vector n using the formula n = ru×rv/|ru×rv|. After simplifying the cross product, we get n = (-2u cos(v), -2u sin(v), u). The magnitude of the cross product is |ru×rv| = 2u^2. Integrating over the surface of the cone, we get ∬s2xyz ds = ∫0^π/2 ∫0^4 (2u^4 cos(v) sin(v))du dv = 128/3π.

Therefore, the surface integral ∬s2xyz ds over the cone with given parametric equations is equal to 128/3π.

To know more about surface integral visit:

https://brainly.com/question/15177673

#SPJ11

how many possible phone numbers contain 2021 as a contiguous subsequence (e.g. 532-0219 or 202-1667 but not 230-6179 nor 227-5986)?

Answers

The total number of phone numbers that contain 2021 as a contiguous subsequence is:

7 * 1000 * 1000000 = 7,000,000,000

To count the number of phone numbers that contain 2021 as a contiguous subsequence, we can use the following approach:

First, we choose the position of the first digit of the subsequence, which can be any of the first 7 digits of the phone number (we exclude the last three digits because we need at least 4 digits to form the subsequence). There are 7 ways to choose this position.

Once we have chosen the position of the first digit, we need to choose the next three digits in order to form the subsequence 2021. Since there are 10 digits to choose from, and the digits can be repeated, there are 10^3 = 1000 ways to choose these digits.

Finally, we can choose the remaining 6 digits of the phone number arbitrarily, since we have already guaranteed that the phone number contains the subsequence 2021. There are 10^6 = 1000000 ways to choose these digits.

Know more about contiguous subsequence here:

https://brainly.com/question/6687211

#SPJ11

Evaluate the integral using the indicated trigonometric substitution. (Use C for the constant of integration.) x3 x = 6 tan(6) dx, Vx2 36 Sketch and label the associated right triangle.

Answers

The associated right triangle has one angle θ whose tangent is x/6, and the adjacent side has length 6 while the opposite side has length x.

To evaluate the integral, we use the trigonometric substitution x = 6 tan(θ). Then, dx = 6 sec2(θ) dθ, and substituting in the integral we get:

∫(x^2)/(36+x^2) dx = ∫(36 tan^2(θ))/(36 + 36 tan^2(θ)) (6 sec^2(θ) dθ)

= ∫tan^2(θ) dθ

To solve this integral, we use the trigonometric identity tan^2(θ) = sec^2(θ) - 1, so we get:

∫tan^2(θ) dθ = ∫(sec^2(θ) - 1) dθ

= tan(θ) - θ + C

Substituting back x = 6 tan(θ) and simplifying, we get the final result:

∫(x^2)/(36+x^2) dx = 6(x/6 * √(1 + x^2/36) - atan(x/6) + C)

To know more about right triangle,

https://brainly.com/question/6322314

#SPJ11

determine if the function defines an inner product on r3, where u = (u1, u2, u3) and v = (v1, v2, v3). (select all that apply.) u, v = u12v12 u22v22 u32v32a) satisfies (u,v)=(v,u) b) does not satisfy (u, v)=(v,u) c) satisfies (u, v+w) = (u,v)+(u,w) d) does not satisfy (u, v+w) = (u,v)+(u,w) e)satisfies c (u,v) = (cu, v) f) does not satisfies c (u,v) = (cu, v) g) satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0 h) does not satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0

Answers

The function u,v = u1v1 + u2v2 + u3v3 satisfies properties a, c, and e, and g, so it defines an inner product on R3.

To determine if the function defines an inner product on R3, we need to check if the following properties hold:

Commutativity: (u,v) = (v,u)

Non-commutativity: (u,v) ≠ (v,u)

Additivity: (u,v+w) = (u,v)+(u,w)

Non-additivity: (u,v+w) ≠ (u,v)+(u,w)

Homogeneity: (cu,v) = c(u,v)

Non-homogeneity: (cu,v) ≠ c(u,v)

Positive-definiteness: (v,v) ≥ 0 and (v,v) = 0 if and only if v = 0

Non-positive-definiteness: (v,v) < 0 or (v,v) = 0 if and only if v ≠ 0

The function u,v = u1v1 + u2v2 + u3v3 satisfies properties a, c, and e, and g, so it defines an inner product on R3.

satisfies (u,v) = (v,u)

does not satisfy (u, v) = (v,u)

satisfies (u, v+w) = (u,v)+(u,w)

does not satisfy (u, v+w) = (u,v)+(u,w)

satisfies (cu, v) = c(u,v)

does not satisfy (cu, v) = c(u,v)

satisfies (v, v) ≥ 0 and (v,v) = 0 if and only if v=0

does not satisfy (v, v) ≥ 0 and (v,v) = 0 if and only if v=0

For similar questions on function

https://brainly.com/question/11624077

#SPJ11

The following functions define an inner product on ℝ³: a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃², b) (u, v) = (v, u), c) (u, v+w) = (u, v) + (u, w), e) c(u, v) = (cu, v), and g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0. These properties satisfy the requirements for an inner product on ℝ³.

How did we get the values?

To determine if the function defines an inner product on ℝ³, check if the given properties hold:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

b) (u, v) = (v, u)

c) (u, v+w) = (u, v) + (u, w)

d) (u, v+w) ≠ (u, v) + (u, w)

e) c(u, v) = (cu, v)

f) c(u, v) ≠ (cu, v)

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

h) (v, v) does not satisfy (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

Evaluate each property:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

This property satisfies the requirement for the inner product since it is a sum of squared terms.

b) (u, v) = (v, u)

The given function is symmetric since swapping u and v does not change the result. Therefore, it satisfies (u, v) = (v, u).

c) (u, v+w) = (u, v) + (u, w)

We need to check if the distributive property holds. Let's evaluate both sides:

(u, v+w) = u₁²(v₁+w₁)² + u₂²(v₂+w₂)² + u₃²(v₃+w₃)²

(u, v) + (u, w) = u₁²v₁² + u₂²v₂² + u₃²v₃² + u₁²w₁² + u₂²w₂² + u₃²w₃²

Expanding the squares and comparing the expressions, we can see that (u, v+w) = (u, v) + (u, w). Thus, it satisfies the property.

d) (u, v+w) ≠ (u, v) + (u, w)

Since we have already established that (c) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

e) c(u, v) = (cu, v)

We need to check if the given function is linear in the first argument. Let's evaluate both sides:

c(u, v) = c(u₁²v₁² + u₂²v₂² + u₃²v₃²) = cu₁²v₁² + cu₂²v₂² + cu₃²v₃²

(cu, v) = (cu)₁²v₁² + (cu)₂²v₂² + (cu)₃²v₃² = cu₁²v₁² + cu₂²v₂² + cu₃²v₃²

The expressions are equal, so it satisfies this property.

f) c(u, v) ≠ (cu, v)

Since we have already established that (e) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

For any vector v = (v₁, v₂, v₃), we can evaluate (v, v) as follows

(v, v) = v₁²v₁² + v₂²v₂² + v₃²v₃² = v₁⁴ + v₂⁴ + v₃⁴

The squared terms are always non-negative, so (v, v) ≥ 0 for any v. Additionally, (v, v) = 0 only when v₁ = v₂ = v₃ = 0. Therefore, this property holds.

h) (v, v) does not satisfy (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

Since we have already established that (g) holds, this property cannot hold simultaneously. Therefore, the given function does not satisfy this property.

In summary, the given function defines an inner product on ℝ³ for the following properties:

a) (u, v) = u₁²v₁² + u₂²v₂² + u₃²v₃²

b) (u, v) = (v, u)

c) (u, v+w) = (u, v) + (u, w)

e) c(u, v) = (cu, v)

g) (v, v) ≥ 0 and (v, v) = 0 if and only if v = 0

These properties satisfy the requirements for an inner product on ℝ³.

learn more about symmetric: https://brainly.com/question/29545496

#SPJ4

Find the critical values (-Z Answer: ,Z ) pair that corresponds to a 90% (1-q=0.90) confidence level.

Answers

To find the critical values (-Z, Z) pair that corresponds to a 90% confidence level, we need to use the standard normal distribution table or a calculator that can calculate z-scores.

The critical values correspond to the z-scores that divide the area under the normal distribution curve into two equal parts, leaving a total of 10% of the area in the tails. Since the normal distribution is symmetric, the area in each tail is equal to 5%.

Using a standard normal distribution table or calculator, we can find the z-score that corresponds to the area of 0.05 in the right tail, which is denoted by Z. By symmetry, the z-score that corresponds to the area of 0.05 in the left tail is -Z.

For a 90% confidence level, the area in the middle of the curve (between -Z and Z) is equal to 0.90, so the area in each tail is equal to 0.05.

Using a standard normal distribution table or calculator, we find that Z = 1.645 (rounded to three decimal places). Therefore, the critical values (-Z, Z) pair that corresponds to a 90% confidence level is (-1.645, 1.645).

To know more about normal distribution refer here:

https://brainly.com/question/29509087

#SPJ11

Mad Hatter Publishing specializes in genre fiction for young adults. Recently, several employees have left the company due to a salary dispute. What change to the graph would reflect this change? Production shifts from Q to R. Production shifts from V to T. The curve shifts left and inward. The curve shifts right and outward.

Answers

Mad Hatter Publishing is a publishing company that mainly focuses on genre fiction for young adults. Due to the salary disputes that the company has recently faced, several employees have left the company.

What change to the graph would reflect this change?The curve shifts left and inward. This is the answer that would reflect the change in the graph due to the salary disputes and employee exits from the company.Salary disputes are known to be the cause of employee exits in a company. This happens when employees are not satisfied with their salary levels and demand an increase.

When their demands are not met, they tend to leave the company for other opportunities. In this case, the same thing happened at Mad Hatter Publishing.This change in the employee base would be reflected in the demand and supply curve of the company.

To know more about Salary visit:

https://brainly.com/question/29105365

#SPJ11

While solving a standard form problem, we arrive at the following simplex tableau with basic variables 23, x4, x5. The entries α, β, γ,δ and η in the tableau are unknown parameters. For each one of the following statements, find the conditions of the parameter values that will make the statement true (sufficient condition is enough). (The first column indicates the current basis.) B|δ 2000110 3 -1 41α-4 0 1 0|1 5|γ 300-3 1. The optimization problem is unbounded (optimal value is -oo). 2. The current solution is feasible but not optimal 3. The current solution has the optimal objective value and there are multiple set of basis that achieve the same objective value.

Answers

In the given simplex tableau with basic variables 23, x4, and x5, the entries α, β, γ, δ, and η are unknown parameters. To find the conditions of the parameter values that will make the following statements true:

1. For the optimization problem to be unbounded, the objective function's coefficients corresponding to the non-basic variables in the tableau should be negative or zero. In this case, the non-basic variables are x1, x2, and x6. Therefore, we need to have 4α - 3δ ≤ 0 and -γ + 3η ≤ 0 for the problem to be unbounded.

2. For the current solution to be feasible but not optimal, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). Therefore, we need to have δ > 0 and 3γ < 0.

3. For the current solution to have the optimal objective value and multiple sets of basis that achieve the same objective value, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). In addition, we need to have at least two coefficients in the bottom row to be zero. Therefore, we need to have δ = 0 and 3γ ≥ 0, and at least one of the following conditions must hold: 4α - 3δ > 0, -γ + 3η > 0, or -4α + 3δ + γ - 3η = 0.

Explanation: The conditions for the given statements are based on the properties of the simplex method and the standard form of the linear programming problem. The simplex method seeks to maximize or minimize the objective function while satisfying the constraints of the problem. The standard form requires all variables to be non-negative and the constraints to be written as linear equations or inequalities. The simplex tableau is used to keep track of the current basic variables, their coefficients, and the objective function value. The conditions for the given statements are derived by analyzing the coefficients in the tableau and their relationships with the objective function value.

To know more about variable visit:

https://brainly.com/question/28248724

#SPJ11

Other Questions
a radio station broadcasts with a power of 90.13 kw. how many photons are produced each second if that station broadcasts at a frequency of 101.2 m hz select all that apply which of the following are good principles for determining the amount of information to include in a business communication? (choose every correct answer.) multiple select question. the reader might not know how to respond to a message that has too little information. too much information is distracting and makes the message harder to comprehend. efficient communication calls for providing only the most important ideas and allowing the reader to follow up with questions. the message is more persuasive when it contains substantial background information and interesting anecdotes. . prove that if v is a vector space having dimension n, then a system of vectors v1, v2, . . . , vn in v is linearly independent if and only if it spans v . A mirror is rotated at an angle of 10 from its original position. How much is the rotation of the angle of reflection from its original position?a. 5b. 10c. 15d. 20e. 25f. 30 native americans produced petroglyphs by etching into ________. A string 1.5 m long with a mass of 2.1 g is stretched between two fixed points with a tension of 95 N.Find the frequency of the fundamental on this string.Express your answer using two significant figures. Select the correct answer.Which of the following statements describes the command economy of the Soviet Union?OA. The government allowed private businesses to produce goods and services demanded by the market.OB.The government decided what goods and services would be produced and supplied to the market.The government allowed workers to own the means of production.D. The government ensured high wages for workers.C. Draw an example (of your own invention) of a partition of twodimensional feature space that could result from recursive binary splitting. Your example should contain at least six regions. Draw a decision tree corresponding to this partition. Be sure to label all aspects of your figures, including the regions R1, R2,..., the cutpoints t1, t2,..., and so forth. A cylindrical pressure vessel made of carbon fiber composite is subjected to a tensile load P = 600 KN (see figure). The cylinder has an outer radius of r = 125 mm, a wall thickness of t = 6.5 mm and an internal pressure of p = 5 MPa. A small hole is to be drilled into the side midspan of the cylinder for an inlet hose. a. Determine the state of stress at the site of the planned hole. 7) The global financial crisis lead to a decline in stock prices becauseA) of a lowered expected dividend growth rate.B) of a lowered required return on investment in equity.C) higher expected future stock prices.D) higher current dividends As an attempt to minimize energy requirements, a new residence has been constructed in Dallas, Texas (100F dry bulb; 20F daily range; W=0.0156). Size the air-conditioning unit (Btu/h) for this residence with the following features: No windows Inside design conditions 75F, 60% rh (W = 0.0112) One 3 ft by 7 ft, 2 in. thick wood door with storm door on south side, U=0.26 Btu/h ft. F, one 3 ft by 7 ft, 2 in. thick in their facial features, australopithecines resemble _______ more than modern humans. roles are clearly defined for both the prosecution and the dfense because in the united states we have what type of legal system Ramsey Company issues an $800,000, 45-day note to Buckner Company for merchandise inventory. Buckner discounts the note at 7%. Required: A. Journalize Ramseys entries to record (refer to the companys Chart of Accounts for exact wording of account titles): 1. the issuance of the note on January 1. 2. the payment of the note at maturity. Assume a 360-day year. B. Journalize Buckners entries to record (refer to the companys Chart of Accounts for exact wording of account titles): 1. the receipt of the note on January 1. 2. the receipt of the payment of the note at maturity. Assume a 360-day year. Be sure to enter the correct dates research on mice who were bred to be genetically fat showed that when they were injected with leptin, ____. Baldwin has a leverage of 1.82 This means that:(Assume leverage is calculated as Assets/Equity)Select: 1$1.82 of assets is funded with $1.00 of debt and $0.82 of equity.$1.82 of assets is funded with $1.00 of equity and $0.82 of debt.Assets are funded with 82% debt.Assets are funded with 82% equity. 1. what is the cumulative demand for all periods in labor hours? a. 50,500 b. 52,770 c. 36,680 d. 29,350 Many U.S. Firms Use Leases Leasing is big business for U.S. companies. For example, business investment in equipment in a recent year totaled $709 billion. Leasing accounted for about 31% of all business investment ($218 billion). Who does the most leasing? Interestingly major banks, such as Continental Bank, J.P. Morgan Leasing, and US Bancorp Equipment Finance, are the major lessors. Also, many companies have established separate leasing companies, such as Boeing Capital Corporation, Dell Financial Services, and John Deere Capital Corporation. And, as an excellent example of the magnitude of leasing, leased planes account for nearly 40% of the U.S. fleet of commercial airlines. In addition, leasing is becoming increasingly common in the hotel industry. Marriott, Hilton, and InterContinental are increasingly choosing to lease hotels that are owned by someone else. Why might airline managers choose to lease rather than purchase their planes? Pretty sure x is 75 but what do i write for the reason?Thank uu true/false. cross-culturally, domestic activities tend to earn higher prestige than public activities, especially in stratified societies.