Complete question :
Complete the expressions Write each answer as a number, a variable, or the product of a number and a variable 7(9r + 2) = 7 . 9r + 7 . ___ = ___ +
Answer:
2 ; 63r ; 14
Step-by-step explanation:
Given :
7(9r + 2)
Opening the bracket :
7*9r + 7*2 - - - - (1)
Taking the product
63r + 14 - - - - (2)
Now filling the blanks :
First blank corresponds to 2 (from (1))
Second blank corresponds to 63r (from (2))
Third blank should be 14
If a star is 5,699,999,999,999,999 meters from earth, how long does it take light to travel from earth to the star?
Answer
19.013.153,42629466 giây
Step-by-step explanati
van toc ánh sán =299.792.458 m/s
s= v*t
t=s/v
t= 5.699.999.999.999.999/299.792.458= 19.013.153,42629466 giây
every solid shapes sit or stand on me what am I
Answer:
Base
Step-by-step explanation:
Every solid shape has to have a base that they sit/stand on. Because the base is the bottom of the shape and lies on the table. Hence, answering your question.
Hope this helps!
This one was difficult but if your work through it, you will get it.
Keep trying!
Explain why the work is not correct.
I am thinking of a 3-digit number.
When it is divided by 9, the
remainder is 3
When it is divided by 2, the
remainder is 1
When it is divided by 5, the
remainder is 4
What is my number?
Is this problem possible to solve?
Answer:
The answer is 939
Step-by-step explanation:
If you divide 939 by 9 it equals 104 R3.
If you divided 939 by 2 it equals 469 R1
And if you divide 939 by 5 it equals 187 R4
Hope this helps!
FIRST PERSON TO SOLVE THIS IS THE SMARTEST PERSON ON BRAINLY
Answer:
x=161
Step-by-step explanation:
A rectangular storage container with an open top is to have a volume of 14 cubic meters. The length of its base is twice the width. Material for the base costs 10 dollars per square meter. Material for the sides costs 8 dollars per square meter. Find the cost of materials for the cheapest such container.
Answer:
C(min) = 277.95 $
Container dimensions:
x = 2.822 m
y = 1.411 m
h = 3.52 m
Step-by-step explanation:
Let´s call x and y the sides of the rectangular base.
The surface area for a rectangular container is:
S = Area of the base (A₁) + 2 * area of a lateral side x (A₂) + 2 * area lateral y (A₃)
Area of the base is :
A₁ = x*y we assume, according to problem statement that
x = 2*y y = x/2
A₁ = x²/2
Area lateral on side x
A₂ = x*h ( h is the height of the box )
Area lateral on side y
A₃ = y*h ( h is the height of the box )
s = x²/2 + 2*x*h + 2*y*h
Cost = Cost of the base + cost of area lateral on x + cost of area lateral on y
C = 10*x²/2 + 8* 2*x*h + 8*2*y*h
C as function of x is:
The volume of the box is:
V(b) = 14 m³ = (x²/2)*h 28 = x²h h = 28/x²
C(x) = 10*x²/2 + 16*x*28/x² + 16*(x/2)*28/x²
C(x) = 5*x² + 448/x + 224/x
Taking derivatives on both sides of the equation we get:
C´(x) = 10*x - 448/x² - 224/x²
C´(x) = 0 10x - 448/x² - 224/x² = 0 ( 10*x³ - 448 - 224 )/x² = 0
10*x³ - 448 - 224 = 0 10*x³ = 224
x³ =22.4
x = ∛ 22.4
x = 2.822 m
y = x/2 = 1.411 m
h = 28/x² = 28 /7.96
h = 3.52 m
To find out if the container of such dimension is the cheapest container we look to the second derivative of C
C´´(x) = 10 + 224*2*x/x⁴
C´´(x) = 10 + 448/x³ is positive then C has a minimum for x = 2.82
And the cost of the container is:
C = 10*(x²/2) + 16*x*h + 16*y*h
C = 39.82 + 158.75 + 79.38
C = 277.95 $
A 20-year loan of 1000 is repaid with payments at the end of each year. Each of the first ten payments equals 150% of the amount of interest due. Each of the last ten payments is X. The lender charges interest at an annual effective rate of 10%. Calculate X.
Answer:
[tex]x = 97[/tex]
Step-by-step explanation:
Given
[tex]t = 20[/tex] --- time (years)
[tex]A =1000[/tex] --- amount
[tex]r = 10\%[/tex] --- rate of interest
Required
The last 10 payments (x)
First, calculate the end of year 1 payment
[tex]y_1(end) = 10\% * 1000 * 150\%[/tex]
[tex]y_1(end) = 150[/tex]
Amount at end of year 1
[tex]A_1=A - y_1(end) - r * A[/tex]
[tex]A_1=1000 - (150 - 10\% * 1000)[/tex]
[tex]A_1 =1000 - (150- 100)[/tex]
[tex]A_1 =950[/tex]
Rewrite as:
[tex]A_1 = 0.95 * 1000^1[/tex]
Next, calculate the end of year 1 payment
[tex]y_2(end) = 10\% * 950 * 150\%[/tex]
[tex]y_2(end) = 142.5[/tex]
Amount at end of year 2
[tex]A_2=A_1 - (y_2(end) - r * A_1)[/tex]
[tex]A_2=950 - (142.5 - 10\%*950)[/tex]
[tex]A_2 = 902.5[/tex]
Rewrite as:
[tex]A_2 = 0.95 * 1000^2[/tex]
We have been able to create a pattern:
[tex]A_1 = 1000 * 0.95^1 = 950[/tex]
[tex]A_2 = 1000 * 0.95^2 = 902.5[/tex]
So, the payment till the end of the 10th year is:
[tex]A_{10} = 1000*0.95^{10}[/tex]
[tex]A_{10} = 598.74[/tex]
To calculate X (the last 10 payments), we make use of the following geometric series:
[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + r)^n[/tex]
[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + 10\%)^n[/tex]
[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + 0.10)^n[/tex]
[tex]Amount = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
The amount to be paid is:
[tex]Amount = A_{10}*(1 + r)^{10}[/tex] --- i.e. amount at the end of the 10th year * rate of 10 years
[tex]Amount = 1000 * 0.95^{10} * (1+r)^{10}[/tex]
So, we have:
[tex]Amount = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+r)^{10}[/tex]
[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+10\%)^{10}[/tex]
[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+0.10)^{10}[/tex]
[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1.10)^{10}[/tex]
The geometric sum can be rewritten using the following formula:
[tex]S_n = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
[tex]S_n =\frac{a(r^n - 1)}{r -1}[/tex]
In this case:
[tex]a = x[/tex]
[tex]r = 1.10[/tex]
[tex]n =10[/tex]
So, we have:
[tex]\frac{x(r^{10} - 1)}{r -1} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
[tex]\frac{x((1.10)^{10} - 1)}{1.10 -1} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
[tex]\frac{x((1.10)^{10} - 1)}{0.10} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
[tex]x * \frac{1.10^{10} - 1}{0.10} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]
So, the equation becomes:
[tex]x * \frac{1.10^{10} - 1}{0.10} = 1000 * 0.95^{10} * (1.10)^{10}[/tex]
Solve for x
[tex]x = \frac{1000 * 0.95^{10} * 1.10^{10} * 0.10}{1.10^{10} - 1}[/tex]
[tex]x = 97.44[/tex]
Approximate
[tex]x = 97[/tex]
the diagram below shows a triangular metal plate with sides 4.5cm,6cm and 7.5cm. it has three small circular holes of radius 4mm.calculate the area of the plate to the nearest square centimeters.
Answer:
d = 4.5 cm
A = 1/4 (p x d²)
= 1/4 (3.14 x d x d)
= 1/4 (3.14 x 4.5 cm x 4.5 cm)
= 15.9 cm2
The area of the plate nearest square centimeters is 12cm².
What is a scalene triangle ?A scalene triangle has three different sides and corresponding to that three different interior angles.
According to the given question we have triangle with sides 4.5cm,6cm and 7.5cm.
We know for a scalene triangle given 3 sides.
area(A) = [tex]\sqrt{s(s-a)(s-b)(s-c)[/tex].
Where S is semi perimeter and a,b,c are the three sides.
= (a+b+c)/2.
= (4.5+6+7.5)/2 cm.
= 18/2 cm.
= 9 cm.
∴ The area of the triangle is
= [tex]\sqrt{9(9-4.5)(9-6)(9-7.5)[/tex]cm².
= [tex]\sqrt{9(4.5)(3)(1.5)}[/tex] cm².
= [tex]\sqrt{182.5}[/tex] cm² this is in between 13 square and 14 square approx 13.5 cm².
Now it has three small circles of radius of 4 mm or 0.4 cm.
We know area of a circle is πr² and area of 3 circles having same radius is 3(πr²) cm².
= 3{π(0.4)²}
= 3{3.14(0.16)} cm².
= 3(0.5024) cm².
= 1.5072 cm².
Now to obtain the area of the scalene triangle with those three holes of 0.4 cm we have subtract the area of the three circles from the triangle which is
= (13.5 - 1.5) cm².
= 12 cm².
learn more about heron's formula here :
https://brainly.com/question/15188806
#SPJ2
James hits a golf ball 145.7 yards Kayla hit a golf ball 122.95 yards how much farther does James hit a golf ball
Is triangle XYZ = ABC ? If so, name the postulate that applies. A. Congruent - ASA B. Congruent - SAS C. Might not be congruent D. Congruent - SSS
30 points ~ Thirty-eight kids are riding the bus. Half of the kids are girls. How many boys are on the bus?
Answer:
19 boys
Step-by-step explanation:
38 kids on the bus
1/2 are girls, that means 1/2 are boys
1/2 * 38 = 19
There are 19 girls and 19 boys
Jumlah siswa suatu kelas adalah 45 orang. Wanita 25 orang dan 3 orang diantaranya berkacamata. Jika siswa
yang berkacamata seluruhnya 7 orang, maka siswa pria yang tidak berkacamata adalah … orang
Answer:
16 orang
Step-by-step explanation:
jumlah siswa pria = 45-25 = 20 orang
jumlah siswa pria yang berkacamata =
7-3 = 4 orang.
maka jumlah siswa pria yang tidak berkacamata =
20-4 = 16 orang
semoga membantu
Part A create an equation and solve for X:
Part B find the measure of the unknown angle
Answer:
x = 2 degree and unknown angle = 31 degree
Step-by-step explanation:
149 + 13x + 5 =180 degree (being linear pair)
154 + 13x = 180
13x = 180 - 154
x = 26/13
x = 2 degree
unknown angle = 13x + 5
=13*2 + 5
=26 + 5
=31 degree
The value of the variable x is 2°. Then the value of the unknown angle is 31°.
What is an angle?The inclination is the separation seen between planes or vectors that meet. Degrees are another way to indicate the slope. For a full rotation, the angle is 360 °.
Supplementary angle - Two angles are said to be supplementary angles if their sum is 180 degrees.
Both angles are supplementary angles. Then the equation is given as,
13x + 5° + 149° = 180°
13x + 154° = 180°
13x = 180° - 154°
13x = 26°
x = 26° / 13
x = 2°
The value of the variable x is 2°. Then the value of the unknown angle is given as,
13x + 5° = 13(2°) + 5°
13x + 5° = 26° + 5
13x + 5° = 31°
The value of the variable x is 2°. Then the value of the unknown angle is 31°.
More about the angled link is given below.
https://brainly.com/question/15767203
#SPJ2
A money box contains only 10-cent
and 20-cent coins. There are 28
coins with a total value of $3.80.
How many coins of each?
Answer:
Number of 10 cents = 18
Number of 20 cents = 10
Step-by-step explanation:
Let number of 10 cents be = x
Let number 20 cents be = y
Total number of coins = x + y = 28 -------- ( 1 )
Total amount in the box = 0.10 x + 0.20y = 3.80 ---------- ( 2 )
Solve the equations to find x and y
( 1 ) => x + y = 28
x = 28 - y
Substitute x in ( 2 )
( 2 ) => 0.10(28 - y) + 0.20y = 3.80
2.80 - 0.10y + 0.20y = 3.80
0.10 y = 3.80 - 2.80
0.10 y = 1.00
[tex]y = \frac{1}{0.10} = 10[/tex]
y = 10
Substitute y in ( 1 ) => x + y = 28
x + 10 = 28
x = 28 - 10
x = 18
When a baseball park owner charges $3.00 for admission, there is an average attendance of 100 people. For every $0.10 increase in the admission price, there is a loss of 2 customers from the average number.
1. What admission price should be charged in order to maximize revenue?2. What is the maximum revenue?
Answer:
$1
max rev = 80(4) = $320
Step-by-step explanation:
let us do this in pennies
R = (100 - x/5)(300 + x)
d/dr = -2x - 200
5
(-2x-200)/5 = 0
-2x = 200
x = 100
An amount of $320 is the admission price that should be charged in order to maximize revenue.
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Now, Let x represent the revenue function.
Hence, We can formulate;
x = (3 + 0.1(x))(100 - 2x)
x = 300 - 6x + 10x - 0.2x²
x = 300 + 4x- 0.2x²
x' = 4 - 0.4x
Generally, a maximum revenue occurs when x' = 0:
x' = 4 - 0.4x = 0
4 = 0.4x
x = 4 / 0.4
x = 10
Hence, The admission price,
= 3 + 0.1x
= 3 + 0.1 x 10
= 3 + 1
= $4
Thus, The Maximum revenue is,
= $4 (100 - (10 x 2)
= $4 (100 - 20)
= $4 x 80
= $320
In conclusion, the amount of $320 is the admission price that should be charged in order to maximize revenue.
Learn more about maximize revenue visit:
brainly.com/question/13799721
#SPJ2
When doctors prescribe medicine, they must consider how much the drug’s effectiveness will decrease as time passes. If each hour a drug is only 95% as effective as the previous hour, at some point the patient will not be receiving enough medicine and must be given another dose. If the initial dose was 250 mg, what will the level of the dose be after 3 hours?
Please hurry!
Answer:
ok so this is what we have to do
250*0.95*0.95*0.95
ok so
214.34375
so about 214.3
Hope This Helps!!!
What number must you add to complete the square? x^2+26x=11
Answer:
[tex] {x}^{2} + 26x = 11 \\ x = 0.4 \: and \: - 26.4[/tex]
Can you help me with this question
Answer:
Below in bold.
Step-by-step explanation:
We see from the diagram that:
SY = SK + KY
So, substituting the given values:-
36 - x = 13x - 5 + 2x + 9
-x - 13x - 2x = - 5 + 9 - 36
-16x = -32
x = 32/16 = 2.
So SK = 13(2) - 5 = 21.
KY = 2(2) + 9 = 13.
SY = 36 - 2 = 34.
21 + 13 = 34 so this is a check that our calculation is correct.
the average of students is 15 years if the age of a teacher is included their average becomes 18 years .what is the age of the teacher ?
Answer:
21; the age of the teacher
Step-by-step explanation:
15+x/2=18
Estimate - I estimated in the 20's because it only averaged up a little bit
Started with 23 and kept going until i got to my answer
21
15+21/2
36/2
18
Please mark brainliest :)
Solve the following system of equations by graphing.
- 4x + 3y -12
- 2x + 3y -18
Answer:
The solution of the graph is at (-3,-8).
Step-by-step explanation:
The given equations are :
-4x+3y=-12
and
-2x+3y=-18
These are the system of equations in two variables.
The graphs for the equations are :
The solution of the graph is at (-3,-8).
Anne invested $1000 in an account with a 3% annual interest rate. She made no deposits or
withdrawals on the account for 2 years. If interest was compounded annually, which equation
represents the balance in the account after the 2 years?
Which of the following is the general term for the sequence? -a, a^2, -a^3, a^4,...
-a(-a)^ n-1
(-a)^n + 1
(-1)a^n + 1
a(-1)^n - 1
Answer:
The answer would be [tex]-a(-a)^{n-1}[/tex].
Step-by-step explanation:
We can simply substitute the terms into this equation. Checking the 1st term, [tex]-a(-a)^{1-1} = -a(-a)^{0} = -a(1) = -a[/tex]. Moving on to the second term, we see [tex]-a(-a)^{2-1} = -a(-a)^{1} = -a(-a) = a^{2}[/tex]. And so on and so forth. We can see how the answer fluctuates between negative and positive, while gaining one more exponent every term, which fits with the sequence given. Therefore, the answer would be [tex]-a(-a)^{n-1}[/tex].
Hope this helped!
Manu has soccer practice at the park at 5:20 P.M. It ends at 6:15 P.M.
How long is Manu's soccer practice?
Answer:
His practice is 55 minutes long
you can look at it this way
from 5:20pm to 6:pm, is only 40 minutes
then from 6:00pm to 6:15pm is only 15 minutes
40 + 15 = 55
What is the solution to the equation 1/h-5+2/h+5=16/h^2-25
9514 1404 393
Answer:
h = 7
Step-by-step explanation:
Perhaps you want the solution to ...
1/(h -5) +2/(h +5) = 16/(h^2 -25)
Parentheses are required around denominators that have math operations.
Multiply by (h^2-25) and solve the linear equation.
[tex]\displaystyle\frac{1}{h-5}+\frac{2}{h+5}=\frac{16}{h^2-25}\qquad\text{given}\\\\(h+5)+2(h-5)=16\qquad\text{multiply by $h^2-25$}\\\\3h-5=16\qquad\text{simplify}\\\\3h=21\qquad\text{add 5}\\\\\boxed{h=7}\qquad\text{divide by 3}[/tex]
explain what it means for a function to be O(1)
Answer:
a function that converges to 0. '' This means that there is some input size past which the function is always between -0.1 and 0.1; there is some input size past which the function is always between -0.01 and 0.01; and so on.
Find the value of B if the distance between the point A and B is root 8 (1,2) and (3,b)
Answer:
b = -4 and 0
Step-by-step explanation:
Using the distance formula
D = √(x2-x1)² + (y2-y1)²
√8 = √(b-2)² + (3-1)²
√8 = √(b-2)² + 2²
Square both sides
8 = (b-2)² + 2²
8 = (b-2)² + 4
8 - 4 = (b-2)²
4 = (b-2)²
Square root both sides
±√4 = b- 2
±2 = b - 2
b = -2 - 2 and b = -2 + 2
b = -4 and 0
This gives the values of b
13. Find the length of X (in the picture)
Answer:
x=2
Step-by-step explanation:
the sides are proportional due the angles being equal
since the hypotonuse is 5 on the bigger one and 2.5 on the small one we can infer there is a ×2 difference
so 4÷2=x
x=2
Please I really need help
=======================================================
Explanation:
The triangular face has area of base*height/2 = 8*2/2 = 16/2 = 8 square feet.
Multiply this with the depth of the prism to get 8*12 = 96 cubic feet
----------
For any prism, the volume formula is
V = (area of base)*(depth of prism)
The term "depth" can be replaced with "height" and it's the same idea.
In this problem, we have a triangular prism because the parallel sides are triangles.
33. The perimeter of a room is 22m.lf
the length of the room is 6.5m,
what is its width?
The formula for perimeter is 2(Length) + 2(width)
Fill in the known information:
22 = 2(6.5)+ 2(width)
Simplify:
22 = 13 + 2(width)
Subtract 13 from both sides:
9 = 2(width)
Divide both sides by 2:
Width = 4.5m
Pls do this for me I am getting annoyed with this
Answer:
x = 1.7
Step-by-step explanation: