CollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollegeCollege
At 3:15 p.m., Sten began packing snacks to take to the park.
He spent 20 minutes packing snacks for his friends.
He spent 5 minutes loading the snacks into his backpack.
Using the number line, how many minutes does he now have until he leaves for the park at 4:00 p.m.?
Answer:
20 minutes
Step-by-step explanation:
20 minutes after 3:15 is 3:35, then 5 more minutes is 3:40. Therefore Sten has 20 minutes left until 4pm.
Arithmetic or geometric 18,13,8
Answer:
That is Arithmetic
Step-by-step explanation:
Arithmetic Sequence is described as a list of numbers, in which each new term differs from a preceding term by a constant quantity. Which is -5 in this case.
Hope this helps
Find the volume and surface area of the rectangular solid. The length is 4 meters, the width is 6 meters, and the height is 3 meters.
Answer:
Volume = h * w * l (height, width, length)
Volume = 4* 6 * 3
Volume = 72 cube meters
Surface area is finding the are of every 2D plane on the solid.
2(w * h) + 2(l*h) + 2(w * l)
Surface are = 108 square meters
What is the quotient of the fractions below? 2/3÷5/4
answer:
2/3÷5/4 is equal to 8/15
f h(x) = x – 7 and g(x) = x2, which expression is equivalent to (g circle h) (5)?
Answer:
here is your answer
Step-by-step explanation:
here is your answer
20 POINTS- Marlene surveyed her classmates asking them whether they prefer to vacation during spring break or summer and the type of vacation preferred. The results are shown in the table.
Marlene surveyed her classmates asking them whether they prefer to vacation during spring break or summer and the type of vacation preferred. The results are shown in the table.
A 4-column table with 5 rows titled Vacation Preferences. Column 1 has entries beach, big city, camping, skiing, total. Column 2 is labeled spring with entries 35, 7, 14, 4, 60. Column 3 is labeled summer with entries 10, 2, 8, 10, 30. Column 4 is labeled total with entries 45, 9, 22, 14, 90.
Complete each statments.
About ____% of the students surveyed prefer a spring camping vacation.
About ____% of the students surveyed prefer a big city vacation.
Answer:
The answers for edge 2021 is
Step-by-step explanation:
16 and 10
Find the volume. Help please it’s due tomorrow
Answer:
2cm
Step-by-step explanation:
vbjufdxcvhjjkknvxzdhjkbcxdf
If the sum of the interior angle of a polygon is 2700 how many sides does the polygon have??
=================================================
Work Shown:
S = sum of all interior angles of a polygon
S = 180(n-2)
2700 = 180(n-2)
180(n-2) = 2700
n-2 = 2700/180
n-2 = 15
n = 15+2
n = 17
There are 17 sides to this polygon.
-------------------------
Extra info (optional section):
We call this a 17-gon. Simply start with "n-gon" and replace n with 17.
You could also call it a heptadecagon
hepta = 7
deca = 10
so heptadeca means 17. Personally, I prefer 17-gon as the better name since it's easier to remember.
Whats the equavalent to log8 64+log8 8
Calculate the sample standard deviation and sample variance for the following frequency distribution of hourly wages for a sample of pharmacy assistants.
Class Frequency
8.26 20
10.01-11.75 38
11.76 36
13.51-15.25 25
15.26-17.00 27
Sample Variance: ___________
Sample Standard Deviation: _________
Answer:
(a) The sample variance is 16.51
(a) The sample standard deviation is 4.06
Step-by-step explanation:
Given
[tex]\begin{array}{cc}{Class} & {Frequency} & 8.26 - 10.00 & 20 &10.01-11.75 & 38 &11.76 - 13.50& 36 & 13.51-15.25 &25&15.26-17.00 &27 &\ \end{array}[/tex]
Solving (a); The sample variance.
First, calculate the class midpoints.
This is the mean of the intervals.
i.e.
[tex]x_1 = \frac{8.26+10.00}{2} = \frac{18.26}{2} = 9.13[/tex]
[tex]x_2 = \frac{10.01+11.75}{2} = \frac{21.76}{2} = 10.88[/tex]
[tex]x_3 = \frac{11.76+13.50}{2} = \frac{25.26}{2} = 12.63[/tex]
[tex]x_4 = \frac{13.51+15.25}{2} = \frac{28.76}{2} = 14.38[/tex]
[tex]x_5 = \frac{15.26+17.00}{2} = \frac{32.26}{2} = 16.13[/tex]
So, the table becomes:
[tex]\begin{array}{ccc}{Class} & {Frequency} & {x} & 8.26 - 10.00 & 20&9.13 &10.01-11.75 & 38 &10.88&11.76 - 13.50& 36 &12.63& 13.51-15.25 &25&14.38&15.26-17.00 &27 &16.13\ \end{array}[/tex]
Next, calculate the mean
[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]
[tex]\bar x = \frac{20*9.13 + 38 * 10.88+36*12.63+25*14.38+27*16.13}{20+38+36+25+27}[/tex]
[tex]\bar x = \frac{1845.73}{146}[/tex]
[tex]\bar x = 12.64[/tex]
Next, the sample variance is:
[tex]\sigma^2 = \frac{\sum f(x - \bar x)^2}{\sum f - 1}[/tex]
So, we have:
[tex]\sigma^2 = \frac{20*(9.13-12.63)^2 + 38 * (10.88-12.63)^2 +...........+27 * (16.13 -12.63)^2}{20+38+36+25+27-1}[/tex]
[tex]\sigma^2 = \frac{2393.6875}{145}[/tex]
[tex]\sigma^2 = 16.51[/tex]
The sample standard deviation is:
[tex]\sigma = \sqrt{\sigma^2}[/tex]
[tex]\sigma = \sqrt{16.51}[/tex]
[tex]\sigma = 4.06[/tex]
Given that E is the universal set and that A and B are subsets of E. simplify An(B-A)
Answer:
Answer a h bro ok bye bro good luck
Disks of polycarbonate plastic from a supplier are analyzed for scratch and shock resistance. The results from 108 disks are summarized as follows: Shock Resistance Scratch Resistance High Low High 55 10 Low 13 30 Let A denote the event that a disk has high shock resistance, and let B denote the event that a disk has high scratch resistance. If a disk is selected at random, determine the following probabilities. P(A)=86/100P(B)=79/100P(A')=7/50P(A U B)=95/100P(A' U B)= ???
Answer:
i) 0.63
ii) 0.37
iii) 0.37
iv) 0.77
v) 0.51
Step-by-step explanation:
Total resistance value = 108
A = high shock resistance
B = high scratch resistance
when a disk is selected at random
i) P(A) = P ( high shock resistance )
= ( 55 + 13 ) / 108
= 68/108 = 17/27 = 0.63
ii) P( B ) = P ( high scratch resistance )
= ( 10 + 30 ) / 108
= 40 / 108 = 10/27 = 0.37
iii) P(A') = 1 - P(A)
= 1 - 17/27 = 10/27 = 0.37
iv) P( A U B ) = P(A) + P(B) - P( A n B )
= 0.63 + 0.37 - 0.233
= 0.766 ≈ 0.77
v) P( A' U B ) = P(A') + P(B) - P(A n B )
= 0.37 + 0.37 - 0.233
= 0.507 ≈ 0.51
I need help with this problem
Answer:
x = 21, y = 40
Step-by-step explanation:
The angle above (7x - 13) is (2x + 4 ) ← alternate angle
(7x - 13) and (2x + 4) are adjacent angles and sum to 180° , then
7x - 13 + 2x + 4 = 180
9x - 9 = 180 ( add 9 to both sides )
9x = 189 ( divide both sides by 9 )
x = 21
Then
2x + 4 = 2(21) + 4 = 42 + 4 = 46
(2x + 4) and (3y + 14) are adjacent angles and sum to 180° , so
46 + 3y + 14 = 180
60 + 3y = 180 ( subtract 60 from both sides )
3y = 120 ( divide both sides by 3 )
y = 40
In the figure, ∆ALM ≅ ∆BLM by Side-Angle-Side (SAS). Which angles are congruent by CPCTC?
Answer:
C. L LAM = L LBM
Step-by-step explanation:
__________
What additional information do you need to prove triangle ABC ~ triangle JKL
Answer:
no additional information will help because the triangles are not similar
Step-by-step explanation:
Similar triangles have 3 pairs of congruent, corresponding angles.
Let's look at triangle ABC. Two angle measures are given: 51 deg and 63 deg.
180 - 51 - 63 - 66
The measure of the thrid angle is 66 deg.
One anlgle measure of triangle JKL is given. It is 66 deg.
Since <J is not congruent to any angle of triangler ABC, the triangles are not similar.
Answer: no additional information will help because the triangles are not similar
Need help finding the end behavior !
Let's focus on f(x) = |x| for now.
Recall that the absolute value of any number is never negative.
Some examples: |-7| = 7 and |5| = 5
So as x gets bigger in the positive direction, so does y. That explains the notation [tex]x \to \infty, \ f(x) \to \infty[/tex]. Informally, we can say "the graph rises to the right".
Similarly, we have [tex]x \to -\infty, \ f(x) \to \infty[/tex] which means it "rises to the left". Both endpoints rise to positive infinity. The left side of the graph goes up forever because again the result of any absolute value function is never negative. So if we plug in say negative a million, then the result is positive a million. In a sense, the V shape absolute value function is almost like a parabola. Both have the exact same end behavior on both sides.
---------------------------------------------------------------------------------------
Now let's move onto g(x) = 2x^2+4
The only thing that matters when determining the end behavior is the leading term. The leading term here is 2x^2
The even exponent means the endpoints either A) go up together or B) go down together. We go with case A because the leading coefficient is positive. Like I mentioned earlier, this parabola mimics the V shaped absolute value graph in terms of the end behaviors being the same.
---------------------------------------------------------------------------------------
Lastly, let's focus on h(y) = 3y^4-2
I'm not sure why your teacher is using y when the others were using x. I'll just swap y for x to get h(x) = 3x^4-2
Like the g(x) function, the largest exponent is even, so the left and right end behaviors go in the same direction. The positive leading coefficient means we have the endpoints going upward toward positive infinity.
A surveyor is estimating the distance across a river. The actual distance is . The surveyor's estimate is . Find the absolute error and the percent error of the surveyor's estimate. If necessary, round your answers to the nearest tenth.
A surveyor is estimating the distance across a river. The actual distance is 284.5 m. The surveyor's estimate is 300 m. Find the absolute error and the percent error of the surveyor's estimate. If necessary, round your answers to the nearest tenth.
Answer:
(i) Absolute error = 15.5m
(ii) Percent error = 5.5%
Step-by-step explanation:Given:
Actual measurement of the distance = 284.5 m
Estimated measurement of the distance by the surveyor = 300 m
(i) The absolute error is the magnitude of the difference between the estimated value measured by the surveyor and the actual value of the distance across the river.
i.e
Absolute error = | estimated value - actual value |
Absolute error = | 300m - 284.5m | = 15.5m
(ii) The percent error (% error) is given by the ratio of the absolute error to the actual value then multiplied by 100%. i.e
% error = [tex]\frac{absoluteError}{actualValue}[/tex] x 100%
% error = [tex]\frac{15.5}{284.5}[/tex] x 100%
% error = 0.05448 x 100%
% error = 5.448%
% error = 5.5% [to the nearest tenth]
Admission prices for a concert are $19 for adults and $11 for students. The concert will not be booked unless total ticket sales are at least $4500. Write the inequality that
expresses this information. (Let the x refer to the number of adult tickets and the y refer to the number of student tickets.)
Answer: [tex]19x+11y \ge 4500[/tex]
=============================================
Explanation:
x = number of adults
y = number of students
The expression 19x represents the money from all the adults while 11y represents the money from all the students (since we get $19 per adult and $11 per student).
In total, the money collected is 19x+11y dollars.
We want this total to be $4500 or larger.
So that's how we get the final answer of [tex]19x+11y \ge 4500[/tex]
what is the slope of this graph?? :,)
Answer:
1/2
Step-by-step explanation:
This line is going up towards the right- that makes it positive. It is increasing. So it can't be negative or going "down"
The question wants to see if you know the direction of the line.
which of the following does not describe a rigid motion transformation
Answer:
The answer to this question is dilating the figure by a scale factor of one half.
Which angle is coterminal with a 130° angle? A. An angle measuring –130° O B. An angle measuring 310° C. An angle measuring 490° O D. An angle measuring 480°
Answer:
Option C
Step-by-step explanation:
Positive coterminal angle of 130° is
(130+360)°
= 490°
Answered by GAUTHMATH
Answer:
An angle measuring 490
Step-by-step explanation:
it was right
if x represents the number since 1988 what does x=32 represents
Explanation:
x is the number of years since 1988
x = 0 represents the year 1988
x = 1 is the year 1988+1 = 1989
x = 2 is the year 1988+2 = 1990
etc
x = 32 is the year 1988+32 = 2020
The value of the expression
2x²
+ x(100 - 15x) when x = 5 is
Х
0 119.
0 129.
135.
0 145.
Answer:
f(5) = 75
Step-by-step explanation:
The function is f(x) = 2x^2 + x(100 - 15x).
Evaluate this function at x = 5: replace each instance of x with 5:
f(5) = 2(5)^2 + 5(100 - 15·5)
Order of operations rules require evaluating the expression enclosed in parentheses first. We get:
f(5) = 2(5)^2 + 5(100 - 15·5)
= 50 + (100 - 75), so that:
f(5) = 50 + 25 = 75
f(5) = 75
Answer:
175?
Step-by-step explanation:
12 Jy
10
Which statement is true regarding the graphed
functions?
g
18
f(
4
Of(0) = 2 and g(-2) = 0
Of(0) = 4 and g(-2) = 4
Of(2)= 0 and g(-2) = 0
Of(-2) = 0 and g(-2) = 0
2
3 4
5 6 x
t6 -5 -3 -2 -12
-4
16
8
10
-121
Mark this and retum
Save and Exit
Next
Submit
Given:
The graphs of the function f(x) and g(x).
To find:
The correct statement for the given graph.
Solution:
From the given graph it is clear that, the function f(x) passes through the points (0,4) and (2,0). So,
[tex]f(0)=4[/tex]
[tex]f(2)=0[/tex]
[tex]f(-2)\neq 0[/tex]
The graph of the function g(x) passes through the point (-2,0). So,
[tex]g(-2)=0[/tex]
Since [tex]f(2)=0[/tex] and [tex]g(-2)=0[/tex], therefore the correct option is C.
The graphs of the given functions, f(x), and g(x), bounces off the x-axis.
Correct response:
The true statement regarding the graphed function is the option;
[tex]\underline{f(2) = 0 \ and \ g(-2) = 0 }[/tex]Method used to find the true statementThe properties of the graph of f(x) and g(x) are;
When x = 0, the value of f(x) is; f(0) = 4
Therefore;
f(0) = 4
When x = 2, the value of f(x), which is the point on the graph corresponding to a x-value of 2 is; [tex]\underline{f(2) = 0}[/tex]
When x = 0, g(x) value is g(0) = 4
When x = -2, g(x) is; g(-2) = 0
The correct option is therefore;
[tex]\underline{f(2) = 0 \ and \ g(-2) = 0}[/tex]Learn more about functions here:
https://brainly.com/question/4179708
need help with algebra question ‼️
Answer:
c
Step-by-step explanation:
There are three types of variations.
1. Direct
2. Inverse
3. Joint
There is positive proportionality is two variables are positively related to each other.
The equation for direct proportionality =
y = bx
where y = dependent variable
b = constant
x = independent variable
if two variables vary inversely, there is a negative relationship between both variables. the increase in one variable leads to a decrease in the other variable
the equation that represents inverse proportion :
where b = constant of proportionality
Joint variation occurs when the dependent variables value is determined by two or more values
For example, the volume of a cylinder is dependent on the value of the radius and height
Rectangle ABCD translates 4 units down and 2 units to the right to form rectangle A'B'C'D'. The vertices of rectangle ABCD are labeled in alphabetical order going clockwise around the figure. If AB = 3 units and AD = 5 units, what is the length of B'C'?
Answer:
The length of BC is 14 units.Step-by-step explanation:
[tex]hope \: \: it \: \: helps} \beta \alpha \infty [/tex]
The length of B'C' is 0 units.
What is translation?It is the movement of the shape in left, right, up, and down direction.
The translated shape will have the same shape and shape.
There is a positive value when translated to the right and up.
There is a negative value when translated to the left and down.
We have,
The length of AD = 5 units.
Since the rectangle translates down by 4 units,
The length of A'D' =5 units.
The width of the original rectangle is AB, which is 3 units.
Since the rectangle translates to the right by 2 units,
The width of the new rectangle = 3 units.
Now,
The length of B'C' is the same as the length of AD', which is 5 units.
Subtracting 5 units from 5 units gives us a length of 0 units.
Thus,
The length of B'C' is 0 units.
Learn more about translation here:
https://brainly.com/question/12463306
#SPJ7
What is the probability that they both choose a card labeled dog?
Answer:
0.16
Step-by-step explanation:
As it is stated that the card having the label of a dog has a probability of 0.4. Hence, the probability that they both choose a card labeled dog is 0.16.
WILL MARK YOU IF YOU ANSWER SO PLEASE HELP
Answer:
x= 83
first take vertical opposite angle then take corresponding angles then you're done
Answer:
x value is 83 degree
because they both are alternate exterior angle
What is the probability that a marble chosen at random is shaded or is labeled with a multiple of 3?
Two-elevenths
Three-elevenths
Five-elevenths
Six-elevenths
The probability that a marble chosen at random is shaded or is labeled with a multiple of 3 is 6/11.
We have given that options
Two-elevenths
Three-elevenths
Five-elevenths
Six-elevenths
We have to determine the probability that a marble chosen at random is shaded or is labeled with a multiple of 3.
What is the probability?Probability is an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates the impossibility of the event and 1 indicates certainty.
Therefore the probability that a marble chosen at random is shaded or is labeled with a multiple of 3 is 6/11.
To learn more about the probability visit:
https://brainly.com/question/25870256
#SPJ2
6/11
Step-by-step explanation:
A book store had 30816 exercise books which were paclced in cartons each carton contained 24 exercise books the mass of an empty carton was 2kg and a full carton 12kg
30,816 books would go into 1,284 containers which would weigh 15,408kg with all the books in them or 2,568kg with the books not in them.