Can someone help me find the surface area of these 2 prisms?

Can Someone Help Me Find The Surface Area Of These 2 Prisms?

Answers

Answer 1

Step-by-step explanation:

1) the 1-st prism is cube. Then its surface area can be calculated as:

A=5*5*6=150 [ft²];

2) A=[Perimeter of triange]*height+2*[Area_of_triangle];

according to the formula above height=3; Perimeter of triangle=9+12+15=36; Area of triangle=12*9*0.5=54;

Finally, A=36*3+2*54=108+108=216 [cm²].


Related Questions

how to write expression for: three times square of apples on a tree minus 22 times the numbers of apples plus 35

Answers

Answer:

Step-by-step explanation:

let the number of apples represent x

3x^2 - 22x + 35

100 Points! Geometry question. Photo attached. Please show as much work as possible. Thank you!

Answers

Answer:

The correct answer is:

(A) enlargement

(a) Find the multiples of 2 greater than 40 and less than 80 in such a way that the sum of their digits is 8. (b) Find the multiples of 5 more thane 106 and less than 200 in such a way that the sum of their digits is 12.​

Answers

Answer:

(a) 44 (4 + 4 = 8), 62 (6 + 2 = 8)

(b) 165 (1 + 6 + 5 = 12)

Out of 200 students in a senior class, 10 students are varsity athletes and on the honor roll. There are 70 seniors who are varsity athletes and 68 seniors who are on the honor roll. What is the probability that a randomly selected senior is a varsity athlete or on the honor roll? Write your answer as a fraction in simplest form or as a decimal.

Answers

Answer: We can use the formula:

P(A or B) = P(A) + P(B) - P(A and B)

where A and B are two events.

In this case, we want to find the probability that a randomly selected senior is a varsity athlete or on the honor roll. We can define the events as follows:

A = the event that a senior is a varsity athlete

B = the event that a senior is on the honor roll

From the problem statement, we know:

P(A and B) = 10/200 = 1/20

P(A) = 70/200 = 7/20

P(B) = 68/200 = 17/50

Plugging these values into the formula:

P(A or B) = P(A) + P(B) - P(A and B)

= 7/20 + 17/50 - 1/20

= 21/50

Therefore, the probability that a randomly selected senior is a varsity athlete or on the honor roll is 21/50.

What is the difference of the polynomials?

Answers

The difference of the two polynomials is [tex]2x^3 + 2x[/tex]. Therefore option no 2 is correct from the image given.

A polynomial is a mathematical expression along with variables and coefficients, combined using only addition, subtraction, multiplication, & non-negative integer exponents.

To discover the distinction of those two polynomials, we want to carry out polynomial subtraction.

[tex]{x^4+x^3+x^2+x} - {x^4-x^3-x^2-x}[/tex]

[tex]= x^4 + x^three + x^2 + x - x^4 + x^3 + x^2 + x ([/tex] distribute the negative sign to every term inside the 2nd set of brackets)

[tex]= 2x^3 + 2x[/tex] (integrate like terms)

Therefore, the difference of the two polynomials is [tex]2x^3 + 2x.[/tex]

Learn more about polynomials:-

https://brainly.com/question/1496352

#SPJ1

Answer: A  7x2+3y2-4x

Step-by-step explanation:

Can someone help me? Thank you

Answers

The solution is, the values are, -3, -2, [tex]\left[\begin{array}{ccc}-2&0\\0&-3\\\end{array}\right][/tex], 6.

Here, we have

given that,

the matrices are:

A = [tex]\left[\begin{array}{ccc}-1&0\\0&3\end{array}\right][/tex]

B = [tex]\left[\begin{array}{ccc}2&0\\0&-1\\\end{array}\right][/tex]

now, we have to find the determinant of them

|A| = -1*3 - 0

    = -3

|B| = -1*2 - 0

    = -2

Now, we have to find AB ,

we get,  A×B = [tex]\left[\begin{array}{ccc}-2&0\\0&-3\\\end{array}\right][/tex]

So, we have, the determinant value is :

|AB| = -2 * -3 - 0

      = 6

Hence, The solution is, the values are, -3, -2, [tex]\left[\begin{array}{ccc}-2&0\\0&-3\\\end{array}\right][/tex], 6.

To learn more on matrix click:

brainly.com/question/28180105

#SPJ1

Question
Which equation describes the pattern shown in the table?

Answers

The equation of the quadratic function is y=x2−4x, the correct option is E

We are given that;

x=-4,-2,1

y=5,-5,0

Now,

The first three rows of the table, we get:

​y=−4 when x=−5y=5 when x=−2y=−3 when x=1​

Substituting into the general form, we get:

​−4=25a−5b+c5=4a−2b+c−3=a+b+c​

Solving this system of equations, we get:

​a=1b=−4c=0​

Therefore, the equation of the quadratic function is y=x2−4x.

Learn more about equations;

https://brainly.com/question/10413253

#SPJ1

Solve each of the following graphically method method

A. Max Z = 10x1 + 20x2
Subject to
5x1+ 3x2 ≤ 30
3x1+ 6x2 ≤ 36
2x1+ 5x2 ≤ 20
x1 ≥ 0 , x2 ≥

Answers

Answer:

Step-by-step explanation:

To solve the given linear programming problem graphically, we'll plot the feasible region determined by the given constraints and then identify the optimal solution by maximizing the objective function Z = 10x1 + 20x2.

Step 1: Plotting the Constraints

We'll start by plotting the equations representing each constraint.

Constraint 1: 5x1 + 3x2 ≤ 30

To plot this constraint, we'll first find the points on the line 5x1 + 3x2 = 30. We can do this by setting x1 to 0 and solving for x2, then setting x2 to 0 and solving for x1.

Setting x1 = 0, we get: 3x2 = 30

x2 = 10

So, one point is (0, 10).

Setting x2 = 0, we get: 5x1 = 30

x1 = 6

So, another point is (6, 0).

Plotting these two points and drawing a line passing through them, we get a boundary line for the first constraint.

Constraint 2: 3x1 + 6x2 ≤ 36

Similarly, we find two points on the line 3x1 + 6x2 = 36.

Setting x1 = 0, we get: 6x2 = 36

x2 = 6

So, one point is (0, 6).

Setting x2 = 0, we get: 3x1 = 36

x1 = 12

So, another point is (12, 0).

Plotting these points and drawing a line passing through them, we get a boundary line for the second constraint.

Constraint 3: 2x1 + 5x2 ≤ 20

Again, we find two points on the line 2x1 + 5x2 = 20.

Setting x1 = 0, we get: 5x2 = 20

x2 = 4

So, one point is (0, 4).

Setting x2 = 0, we get: 2x1 = 20

x1 = 10

So, another point is (10, 0).

Plotting these points and drawing a line passing through them, we get a boundary line for the third constraint.

Step 2: Finding the Feasible Region

Now, we shade the region of the graph that satisfies all the constraints. The feasible region is the intersection of the shaded regions determined by each constraint.

Step 3: Maximizing the Objective Function

To maximize the objective function Z = 10x1 + 20x2, we look for the highest possible value within the feasible region. The optimal solution will be at one of the corner points of the feasible region.

We calculate the coordinates of each corner point formed by the intersection of the constraint lines and evaluate Z = 10x1 + 20x2 at each of these points. The corner point with the highest Z value will be the optimal solution.

By evaluating Z at each corner point, we can determine the optimal solution and its corresponding values of x1 and x2.

Note: Without specific numerical values for the corner points, I am unable to provide the exact coordinates and the optimal solution for this problem. However, by following the steps outlined above and evaluating the objective function at each corner point, you can identify the optimal solution for the given linear programming problem.

Hi. First of all, please give me 5 stars. There is the response:

To solve this problem graphically, we first plot the lines corresponding to the constraints, and then find the feasible region by shading the region that satisfies all constraints. Finally, we evaluate the objective function at each corner point of the feasible region to find the optimal solution.

The constraints can be rewritten in slope-intercept form as follows:

5x1 + 3x2 ≤ 30 => x2 ≤ (-5/3)x1 + 10

3x1 + 6x2 ≤ 36 => x2 ≤ (-1/2)x1 + 6

2x1 + 5x2 ≤ 20 => x2 ≤ (-2/5)x1 + 4

We plot these lines on a graph:

```

| / 5x1 + 3x2 = 30

6 +-------/------------

| / 3x1 + 6x2 = 36

| /

4 +----/--------------

| / 2x1 + 5x2 = 20

| /

2 +-/----------------

| /

|/

+------------------

0 2 4 6 8

```

Next, we shade the feasible region:

```

| /

6 +-------/-----RR-----

| / -----RR-----

| / -----RR-----

4 +----/-----RRR------

| / --RRRRRR------

| / -RRRRR--------

2 +-/----RRRR----------

| / R--------------

|/ R--------------

+------------------

0 2 4 6 8

```

The feasible region is the shaded area. There are 4 corner points: (0, 4), (4, 2), (6, 0), and (8/7, 26/21).

Finally, we evaluate the objective function at each corner point:

- (0, 4): Z = 10(0) + 20(4) = 80

- (4, 2): Z = 10(4) + 20(2) = 80

- (6, 0): Z = 10(6) + 20(0) = 60

- (8/7, 26/21): Z = 10(8/7) + 20(26/21) = 170/7

The optimal solution is (8/7, 26/21) with a maximum value of 170/7.

NO LINKS!!! URGENT HELP PLEASE!!!!

Solve ΔABC using the Law of Cosines part 1

3. a = 12, b = 13, c = 20

4. A = 78°, b = 18, c = 10

Answers

Answer:

3)  A = 35.2°, B = 38.6°, C = 106.2°

4)  B = 70.4°, C = 31.6°, a = 18.7

Step-by-step explanation:

Question 3

To solve for the remaining angles of the triangle ABC given its side lengths, use the Law of Cosines for finding angles.

[tex]\boxed{\begin{minipage}{7.6 cm}\underline{Law of Cosines (for finding angles)} \\\\$\cos(C)=\dfrac{a^2+b^2-c^2}{2ab}$\\\\\\where:\\ \phantom{ww}$\bullet$ $C$ is the angle. \\ \phantom{ww}$\bullet$ $a$ and $b$ are the sides adjacent the angle. \\ \phantom{ww}$\bullet$ $c$ is the side opposite the angle.\\\end{minipage}}[/tex]

Given sides of triangle ABC:

a = 12b = 13c = 20

Substitute the values of a, b and c into the Law of Cosines formula and solve for angle C:

[tex]\implies \cos(C)=\dfrac{a^2+b^2-c^2}{2ab}[/tex]

[tex]\implies \cos(C)=\dfrac{12^2+13^2-20^2}{2(12)(13)}[/tex]

[tex]\implies \cos(C)=\dfrac{-87}{312}[/tex]

[tex]\implies \cos(C)=-\dfrac{29}{104}[/tex]

[tex]\implies C=\cos^{-1}\left(-\dfrac{29}{104}\right)[/tex]

[tex]\implies C=106.191351...^{\circ}[/tex]

To find the measure of angle B, swap b and c in the formula, and change C for B:

[tex]\implies \cos(B)=\dfrac{a^2+c^2-b^2}{2ac}[/tex]

[tex]\implies \cos(B)=\dfrac{12^2+20^2-13^2}{2(12)(20)}[/tex]

[tex]\implies \cos(B)=\dfrac{375}{480}[/tex]

[tex]\implies B=\cos^{-1}\left(\dfrac{375}{480}\right)[/tex]

[tex]\implies B=38.6248438...^{\circ}[/tex]

To find the measure of angle A, swap a and c in the formula, and change C for A:

[tex]\implies \cos(A)=\dfrac{c^2+b^2-a^2}{2cb}[/tex]

[tex]\implies \cos(A)=\dfrac{20^2+13^2-12^2}{2(20)(13)}[/tex]

[tex]\implies \cos(A)=\dfrac{425}{520}[/tex]

[tex]\implies A=\cos^{-1}\left(\dfrac{425}{520}\right)[/tex]

[tex]\implies A=35.1838154...^{\circ}[/tex]

Therefore, the measures of the angles of triangle ABC with sides a = 12, b = 13 and c = 20 are:

A = 35.2°B = 38.6°C = 106.2°

[tex]\hrulefill[/tex]

Question 4

Given values of triangle ABC:

A = 78°b = 18c = 10

First, find the measure of side a using the Law of Cosines for finding sides.

[tex]\boxed{\begin{minipage}{6 cm}\underline{Law of Cosines (for finding sides)} \\\\$c^2=a^2+b^2-2ab \cos (C)$\\\\where:\\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides.\\ \phantom{ww}$\bullet$ $C$ is the angle opposite side $c$. \\\end{minipage}}[/tex]

As the given angle is A, change C for A in the formula and swap a and c:

[tex]\implies a^2=c^2+b^2-2cb \cos (A)[/tex]

Substitute the given values and solve for a:

[tex]\implies a^2=10^2+18^2-2(10)(18) \cos (78^{\circ})[/tex]

[tex]\implies a^2=424-360\cos (78^{\circ})[/tex]

[tex]\implies a=\sqrt{424-360\cos (78^{\circ})}[/tex]

[tex]\implies a=18.6856038...[/tex]

Now we have the measures of all three sides of the triangle, we can use the Law of Cosines for finding angles to find the measures of angles B and C.

To find the measure of angle C, substitute the values of a, b and c into the formula:

[tex]\implies \cos(C)=\dfrac{a^2+b^2-c^2}{2ab}[/tex]

[tex]\implies \cos(C)=\dfrac{(18.6856038...)^2+18^2-10^2}{2(18.6856038...)(18)}[/tex]

[tex]\implies \cos(C)=0.852040063...[/tex]

[tex]\implies C=31.565743...^{\circ}[/tex]

To find the measure of angle B, swap b and c in the formula, and change C for B:

[tex]\implies \cos(B)=\dfrac{a^2+c^2-b^2}{2ac}[/tex]

[tex]\implies \cos(B)=\dfrac{(18.6856038...)^2+10^2-18^2}{2(18.6856038...)(10)}[/tex]

[tex]\implies \cos{B}=0.334888270...[/tex]

[tex]\implies B=\cos^{-1}(0.334888270...)[/tex]

[tex]\implies B=70.434256...^{\circ}[/tex]

Therefore, the remaining side and angles for triangle ABC are:

B = 70.4°C = 31.6°a = 18.7

What are the coordinates of the midpoint of a segment with endpoints at (8, 25) and (16, 7)?


CLEAR CHECK

(0, 43)


(8, -18)


(12, 16)


(24, 32)

Answers

Answer:

C) (12, 16)

----------------

Use midpoint equation to find each coordinate:

x = (8 + 16)/2x = 12

and

y = (25 + 7)/2y = 16

So the midpoint is (12, 16).

What are the values of the trigonometric ratios for this triangle?



Drag the answers into the boxes.
Put responses in the correct input to answer the question. Select a response, navigate to the desired input and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. Responses can also be moved by dragging with a mouse.
sinθ
cosθ
tanθ
543435​43​​45​53
A right triangle. The hypotenuse is labeled as 5. The legs are labeled as 3 and 4. The angle opposite the side labeled 3 is theta.

Answers

The trigonometric ratios are expressed as;

sin θ = 3/5

cos θ = 4/5

tan θ = 3/4

How to determine the value

To determine the trigonometric ratios, we need to know the six identities.

These trigonometric identities are listed thus;

sinetangentcosinecotangentcosecantsecant

From the information given, we have that;

sin θ = opposite/hypotenuse

cos θ = adjacent/hypotenuse

tan θ = opposite/adjacent

We have that;

The hypotenuse is labeled as 5.

The adjacent leg is 4

The angle opposite the side labeled 3 is theta

Now, substitute the value to determine the ratios for each identity, we have that;

sin θ = 3/5

cos θ = 4/5

tan θ = 3/4

Learn more about trigonometric identities at: https://brainly.com/question/7331447

#SPJ1

Venessa bought 80 apples for 4$.out of these apples 25 precent were rotten and had to be thrown away Vanessa sold the remaining apples at 6 cents per apple. What is the profit or loss percentage

Answers

The loss percentage is 91%.Given that Venessa bought 80 apples for 4$, out of these apples, 25% were rotten and had to be thrown away. Venessa sold the remaining apples at 6 cents per apple.To calculate the profit or loss percentage, we need to determine the cost price, selling price, and the number of apples sold.

Cost price (CP) = 4 $.Selling price (SP) = 80 × 0.75 × 6 cents= 36 cents = 0.36 $.Now, let's calculate the profit.Profit = SP – CP= 0.36 $ – 4 $= – 3.64 $Loss = CP – SP= 4 $ – 0.36 $= 3.64 $.

Therefore, Venessa incurred a loss of $3.64 when she sold 80 apples at 6 cents per apple.Now let's calculate the loss percentage Loss Percentage = (Loss / CP) × 100= (3.64 / 4) × 100= 91%.

Therefore, the loss percentage is 91%.Note: If the result obtained after the subtraction of SP from CP is negative, it means there is a loss, and the percentage of loss can be calculated by (loss/CP) × 100.

For more question on profit

https://brainly.com/question/1446002

#SPJ8

Find the area under the standard normal distribution curve between z=0 and z=0.31

Answers

Using the z-score values given, the area under the standard normal distribution curve is 0.123 squared units

What is the area under standard normal distribution curve

The total area under the standard normal distribution curve is 1. Therefore, if we have a z-score, i.e., how far a value is above or below the mean, we can determine the probability of a value less than or greater than that.

The points are

z₁ = 0z₂ = 0.31

A = z₂ - z₁

z₂ = 0.6230

z₁ = 0.5000

A = 0.6230 - 0.5000

A = 0.123 squared units

Learn more on area under standard normal distribution curve here;

https://brainly.com/question/30256273

#SPJ1

a function that has a degree of 5 must have which one of the following?

a. 5 real zeros
b. 4 turning points
c. a maximum
d. at least one real 0

Answers

A function that has a degree of 5 must have the following: d. at least one real 0.

What is a polynomial function?

In Mathematics and Geometry, a polynomial function is a mathematical expression which comprises intermediates (variables), constants, and whole number exponents with different numerical value, that are typically combined by using specific mathematical operations.

Generally speaking, the degree of a polynomial function is sometimes referred to as an absolute degree and it is the greatest exponent (leading coefficient) of each of its term.

In conclusion, a function that has a degree of 5 is referred to as a quintic function and it is characterized by an odd degree, can't have more than 4 turning points, and must have at least one real zero.

Read more on polynomial function here: brainly.com/question/14625910

#SPJ1

Finding the angle when given the right angle and two sides. Please show explanation. Thank you.

Answers

The measure of angle A in the right triangle is 75.52°

What is the measure of angle A?

The figure in the image is a right triangle.

Measure of angle A = ?

Adjacent to angle A = 2

Hypotenuse = 8

To solve for the measure of angle A, we use the trigonometric ratio.

Note: cosine = adjacent / hypotensue

Hence:

cos( A) = adjacent / hypotensue

cos( A ) = 2/8

cos( A ) = 1/4

Take the cos inverse

A = cos⁻¹( 1/4 )

A = 75.52°

Therefore, the measure of the angle is 75.52 degree.

Learn more about trigonometric ratio here: brainly.com/question/28016662

#SPJ1

Find the missing probability.


P(B)=1/4P(AandB)=3/25P(A|B)=?

Answers

The missing probability is P(A|B) is 12/25 if P(B) is 1/4P and (A and B) is 3/25P.

P(B) = 1/4

P(A and B) = 3/25

The conditional probability is used to find the P(A|B):

P(A|B) = P(A and B) / P(B)

Conditional probability is defined as the number of possible outcomes from a given event based on the previous outcomes of the events.

By substituting the given values in the given probability, we get:

P(A|B) = (3/25) / (1/4)

Divide the fraction and multiply it with its reciprocal:

P(A|B) = (3/25) * (4/1)

P(A|B) = 12/25

Therefore, we can conclude that the missing probability is P(A|B) is 12/25.

To learn more about Probability

https://brainly.com/question/30034780

#SPJ1

The complete question is:

Find the missing probability.

P(B)=1/4P

(AandB)=3/25P

P(A|B)=?

13 and 4/20 converted to a decimal​

Answers

The mixed number4 13/20  is equal to the decimal 4.65.

How to convert 13/20  to a decimal

By Converting the mixed number to an improper fraction

To convert 4 13/20 to an improper fraction, we multiply the whole number (4) by the denominator (20) and add the numerator (13) to get the new numerator. The denominator remains the same.

4 13/20 = (4 * 20 + 13) / 20 = 93/20

Dividing the numerator by the denominator:

Divide the numerator (93) by the denominator (20) to get the decimal representation.

93 ÷ 20 = 4.65

Therefore, the decimal representation of 4 13/20 is 4.65.

Complete question: How do you write 4 13/20 as a decimal

Learn more about decimal form. at https://brainly.com/question/618379

#SPJ1

100 Points! Geometry question. Photo attached. Please show as much work as possible. Thank you!

Answers

A graph of the image of polygon DGF after a dilation centered at the origin with a scale factor of 1.5 is shown below.

What is a dilation?

In Geometry, a dilation is a type of transformation which typically changes the dimension (size) or side lengths of a geometric figure, but not its shape.

This ultimately implies that, the side lengths of the dilated geometric figure would be enlarged or reduced based on the scale factor applied.

In this scenario an exercise, we would dilate the coordinates of the polygon by applying a scale factor of 1.5 that is centered at the origin as follows:

D (-2, 0) → (-2 × 1.5, 0 × 1.5) = D' (-3, 0).

G (0, 2) → (0 × 1.5, 2 × 1.5) = G' (0, 3).

F (2, -2) → (2 × 1.5, -2 × 1.5) = F' (3, -3).

Read more on dilation and scale factor here: brainly.com/question/4421026

#SPJ1

Which of the following statements is true for ∠a and ∠b in the diagram?

A) m∠a = m∠b

B) m∠a + m∠b = 90°

C) m∠a + m∠b = 180°

D) m∠a – m∠b = 90°

Answers

Answer:

A

Step-by-step explanation:

If you look at the angles or use something to measure it you can tell that a and b are opposite sides that are parallel to each other. So they are equal.

Toheebah ran round the playground 12 times. the playground is 240m by 160m.What distance did she cover?

Answers

Toheebah covered a distance of 9600 meters by running around the playground 12 times.To

How to determine 160m.What distance did she cover?

The perimeter of a rectangle can be calculated by adding the lengths of all four sides. In this case, the playground has dimensions of 240 meters by 160 meters, so the perimeter is:

Perimeter = 2 * (Length + Width)

Perimeter = 2 * (240m + 160m)

Perimeter = 2 * 400m

Perimeter = 800m

Therefore, the perimeter of the playground is 800 meters.

To find the distance Toheebah covered by running around the playground 12 times, we multiply the perimeter by 12:

Distance covered = Perimeter * Number of laps

Distance covered = 800m * 12

Distance covered = 9600m

So, Toheebah covered a distance of 9600 meters by running around the playground 12 times.

Learn more about distance at https://brainly.com/question/26550516

#SPJ9

If an engine has a 16:7 propeller gear ratio, what is the RPM of the propeller when the engine is turning at 2,400 RPM?

Answers

Answer:

Step-by-step explanation:

76 RPMs

Fill out the following MRP scheme.
The lead time is two weeks. There is no safety stock kept. Orders can be placed​ lot-for-lot.

Answers

MRP Scheme: Determine demand, calculate gross requirements, consider lead time, determine scheduled receipts, calculate planned order receipts, determine planned order release, monitor inventory levels, repeat process periodically. Lot-for-lot ordering, no safety stock.

MRP (Material Requirements Planning) Scheme:

Determine the Demand:

Gather the demand forecast or sales orders for the upcoming period.

Calculate the net demand by subtracting any existing inventory from the total demand.

Calculate the Gross Requirements:

Gross requirements are the total quantity of materials needed to fulfill the net demand.

Consider the lead time of two weeks when calculating the gross requirements.

Determine the Scheduled Receipts:

Check if there are any open purchase or production orders scheduled to arrive within the lead time.

Include the quantities of materials expected to be received during this period.

Calculate the Planned Order Receipts:

Subtract the scheduled receipts from the gross requirements to determine the planned order receipts.

If the planned order receipts are negative, no action is required as the scheduled receipts are sufficient.

If the planned order receipts are positive, create a purchase or production order for that quantity.

Determine the Planned Order Release:

The planned order release specifies when the purchase or production order should be initiated.

It is typically based on the lead time, taking into account any constraints or preferences.

The planned order release should ensure that the materials arrive in time to meet the net demand.

Monitor Inventory Levels:

Keep track of inventory levels regularly to identify any deviations from the plan.

If the actual inventory falls below the net demand, adjust the planned order releases accordingly.

If the actual inventory exceeds the net demand, consider reducing the planned order releases.

Repeat the Process:

Review and update the MRP scheme periodically based on the changing demand and inventory levels.

Continuously adjust the planned order releases to align with the updated requirements.

for such more question on MRP Scheme

https://brainly.com/question/13617399

#SPJ11

WHICH STATEMENT ABOUT A QUADRILATERAL IS TRUE

Answers

A quadrilateral is a polygon with four sides. All trapezoids have two pairs of parallel sides. Option (a) is correct.

Understanding the Properties of Quadrilateral

A quadrilateral is a polygon with four sides, and there are several properties and characteristics that can be true about a quadrilateral. Some possible true statements about a quadrilateral include:

1. A quadrilateral has four angles.

2. A quadrilateral has four vertices.

3. The sum of the interior angles of a quadrilateral is always 360 degrees.

4. A quadrilateral can have sides of different lengths.

5. A quadrilateral can have parallel sides.

Compare each of the properties above to the given options.

Options:

a) All trapezoids have two pairs of parallel sides.

b) Only some rectangles have four right angles.

c) All squares are rectangles.

d) Some rhombuses are trapezoids.

We can conclude that option (a) is correct because it correspond to the property 5 of a quadrilateral.

Learn more about quadrilateral here:

https://brainly.com/question/23935806

#SPJ1

Draw the following shapes on geoboard paper. Find the area of each shape by partitioning it into sub-shapes and finding the areas of the sub-shapes. Remember to label your answers.



Draw the following shapes on geoboard paper. Surround each triangle with a rectangle so that the vertices of the triangle are on the exterior of the rectangle. Think about how you can use rectangles to determine the areas of right triangles that are inside the rectangles. ​

Answers

Sorry my internet isn’t working well but we’ll answer

Answer:

I apologize, I am not able to provide visual drawings or diagrams. However, I can still provide a step-by-step guide to solve the problem.

To find the area of each shape, we need to use rectangles to determine the areas of right triangles that are inside the rectangles. Here are the steps:

1. Draw the given shape on geoboard paper.

2. Surround each triangle with a rectangle so that the vertices of the triangle are on the exterior of the rectangle.

3. Identify the right triangles that are inside the rectangles.

4. Use the formula for the area of a triangle, which is A = (base x height) / 2, to find the area of each right triangle.

5. Use the formula for the area of a rectangle, which is A = length x width, to find the area of each rectangle.

6. Add up the areas of the triangles and rectangles to find the total area of the shape.

Remember to label your answers with the correct units (square units).

help please ambree!!

Answers

Answer:

130 blackberries

Step-by-step explanation:

[tex]\displaystyle 600\biggr(\frac{78^\circ}{360^\circ}\biggr)=130[/tex]

Number 6 look at the image

Answers

It would take Arron 3 hours to travel 18 miles upstream (against the river)

What is an equation?

An equation is an expression that shows how numbers and variables are related to each other using mathematical operations.

Speed is the ratio of total distance to total time taken.

Arron boat has a speed of 9 mph in still water and the speed of the river is 3 mph. Since he is travelling upstream, we subtract both speed:

He needs to travel 18 miles upstream at time t, hence:

(9 mph - 3 mph) = 18 miles / t

6t = 18

t = 3 hours

It would take Arron 3 hours

Find out more on equation at: https://brainly.com/question/2972832

#SPJ1

find the gradient of the curve y = 3x^4 - 2x^2 + 5x - 2 at the points (0, - 2) and (1,4)

Answers

Answer: To find the gradient of a curve at a given point, we need to find the derivative of the function with respect to x and then evaluate it at the desired x-coordinate.

Given the function y = 3x^4 - 2x^2 + 5x - 2, we can find its derivative dy/dx as follows:

dy/dx = d/dx(3x^4) - d/dx(2x^2) + d/dx(5x) - d/dx(2)

Taking the derivative of each term:

dy/dx = 12x^3 - 4x + 5

Now, let's evaluate the derivative at the given points:

Point (0, -2):

Substituting x = 0 into the derivative:

dy/dx = 12(0)^3 - 4(0) + 5

dy/dx = 0 - 0 + 5

dy/dx = 5

Therefore, the gradient at (0, -2) is 5.

Point (1, 4):

Substituting x = 1 into the derivative:

dy/dx = 12(1)^3 - 4(1) + 5

dy/dx = 12 - 4 + 5

dy/dx = 13

Therefore, the gradient at (1, 4) is 13.

What is the meaning of "the atomic formulas"?

Answers

These atomic formulas represent basic assertions or relationships between elements or sets.

In logic and mathematical logic, "atomic formulas" refer to the simplest, indivisible formulas that do not contain any logical connectives or quantifiers.

They are the building blocks from which more complex formulas are constructed.

In set theory, the atomic formulas are typically statements about membership or equality.

For example, "x belongs to y" (x ∈ y) and "x equals y" (x = y) are atomic formulas in set theory.

Using logical connectives (such as conjunction, disjunction, negation, implication, and equivalence) and quantifiers (such as "for all" (∀) and "there exists" (∃)), we can combine atomic formulas to form more complex formulas, enabling us to express a wide range of logical statements and mathematical properties.

Learn more about Logical connectives here:

https://brainly.com/question/28934183

#SPJ1

{NEEDED A.S.A.P.} What is the surface area of the square pyramid represented by the net?




Enter your answer in the box.


[25 Point Reward.]

Answers

Answer:

4(1/2)(3)(5) + (3^2) = 30 + 9 = 39 ft^2

Graph this line using the slope and y-intercept:
y = 4x - 10

Answers

Answer:

-10

Step-by-step explanation:

The required y-intercept of the line y = 4x - 10 is -10.

What is the intercept in the equation?

In the equation, the intercept is the value of the linear function where either of the variables is zero.

Here,

The equation y = 4x - 10 is in slope-intercept form, where the coefficient of x is the slope of the line, and the constant term is the y-intercept.

So, the y-intercept of the line y = 4x - 10 is -10. This means that the line intersects the y-axis at the point (0,-10). When x is 0, the value of y is -10, which is the y-intercept.

Thus, the required y-intercept of the line y = 4x - 10 is -10.

Other Questions
Match the letters to the correct terms a rectangular wing of aspect ratio 10 is flying at a mach number of 0.6. what is the approximate value of dcl/da Work with nulls and test expressions 12. Write a SELECT statement that returns these columns from the Invoices table: invoice_number invoice_ date balance_due payment_date The invoice_number column The invoice_date column The invoice_total column minus the payment_total and credit_total columns The payment_date column Return only the rows where the payment_date column contains a null value. This should retrieve 11 rows. 1. Suppose you weigh 580.00 Newtons (that is about 130 pounds) when you are standing on a beach near San Diego. How much will you weigh at Big Bear lake, which is about 2000 meters high? 2. A spring, with spring constant k = 0.50 N/m, has an m = 0.20 kg mass attached to its end. During its (horizontal) oscillations, the maximum speed achieved by the mass is Umax = 2.0 m/s. (a) What is the period of the system? (b) What is the amplitude of the motion? Water can be added across a double bond using an oxymercuration-reduction reaction. On the following molecules, select the carbons where OH would be added by this reaction. 1st attempt hi See Periodic Table To select/highlight a carbon, click on it. C Solve the following equation for x, where 0x two narrow slits 70 m apart are illuminated with light of wavelength 550 nm . part a what is the angle of the m = 3 bright fringe in radians? which luxury automaker is preparing to go public, with 911 million shares up for grabs? finding the nullspace of a matrix in exercises 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40, find the nullspace of the matrix. The structures of two compounds commonly found in food, lauric acid, C 12H 24O 2, and sucrose, C 12H 22O 11* are shown above. (a) Which compound, lauric acid or sucrose, is more toluble in water? Changes in a companys capital expenditures or fixed asset sales over time must: _______ Let f be the function defined by f(x) For how many values of x in the open interval (0, 1.565) is the instantaneous rate of change of f equal to the average rale of change = of f on the closed interval [0. 1.565] (A) Zero (B) One (C) Three (D) Four Consider the hypothetical observation "a planet beyond saturn rises in west, sets in east. " this observation is not consistent with a sun-centered model, because in this model __________. A university degree isn't necessary for that job. Use a modal verb how could mike justify introducing the intentional slowdown in processing power? An unhappy 0.300-kg rodent, moving on the end of a spring with force constant k = 2.50 N/m, is acted on by a damping force Fx = bvx. (a) If the constant b has the value 0.900 kg/s, what is the frequency of oscillation of the rodent? (b) For what value of the constant b will the motion be critically damped? x = 3 cos ( u ) sin ( v ) x=3cos(u)sin(v) y = 3 sin ( u ) sin ( v ) y=3sin(u)sin(v) z = 3 cos ( v ) z=3cos(v) 0 u 0u 1.57incorrect , 0 v 0v 1.57 The mass of the Sun is 2 1030 kg, and the distance between Neptune and the Sun is 30 AU. What is the orbital period of Neptune in Earth years? 30 Earth years 164 Earth years 3. 8 1011 Earth years 2. 3 1017 Earth years. a spaceship of proper length 50 m is moving away from the earth at a speed of .8c . according to the observes in the ship , their journey takes 6.0 hours . according to observers on earth , what is the length of the ship and how long does the journey take ? Find the z-score for which 20. 99% of the area lies to its right.