Answer:
The effective value of g at 6700 m above the Earth's surface is 9.79 m/s².
Explanation:
The value of g can be found using the following equation:
[tex] F = \frac{GmM}{r^{2}} [/tex]
[tex] ma = \frac{GmM}{r^{2}} [/tex]
[tex] a = \frac{GM}{r^{2}} [/tex]
Where:
a is the acceleration of gravity = g
G: is the gravitational constant = 6.67x10⁻¹¹ m³/(kg.s²)
M: is the Earth's mass = 5.97x10²⁴ kg
r: is the Earth's radius = 6371 km
Since we need to find g at 6700 m, the total distance is:
[tex] r_{T} = 6371000 m + 6700 m = 6377700 m [/tex]
Now, the value of g is:
[tex] a = \frac{GM}{r_{T}^{2}} = \frac{6.67\cdot 10^{-11} m^{3}/(kg*s^{2})*5.97 \cdot 10^{24} kg}{(6377700 m)^{2}} = 9.79 m/s^{2} [/tex]
Therefore, the effective value of g at 6700 m above the Earth's surface is 9.79 m/s².
I hope it helps you!
Define reflection of sound?
What is the maximum current flow possible through a 12 Ohm resistor from a 120V source?
Answer:
I=10.0A
Explanation:
V=RI(120)=(12)II=10.0Aplease help asap
You jog for 55 minutes and reach a park that is 4.8 km away. What was your speed?
Answer: 59.8 or 299/5- 55 x 4.8=264
Explanation:
Or if you wish to multiply it then the answer is above with the addition version.
Hope this helped :)
A recipe gives the instructions below
After browning the meat pour off fat from the pan to further reduce fat use a strainer.
what type lf separation methods are described in the recipe
A decantation and screening
B distillation and screening
C decantation and centrifugation
D distillation and filtration
Answer:
A. decantation and screening
Explanation:
Decantation is the one of the process of separating the mixture. In this process the precipitated liquid is separated from the solid. According to the given instruction for the recipe, the fat which is in liquid state is separated from meat. In the process of screening, more liquid is separated by placing the mixture on the screen. Here, the gravity plays an important role for the process of separation.
Answer:
a
Explanation:
A studious physics student is interrupted by a swarm of bees and chased off a cliff. Since she has her calculator in hand she quickly punches in numbers to figure out the initial velocity she needs to make it into the lake below. The cliff is 10 m high and the lake is 15 m away from the edge of the cliff. Find the time it takes her to drop. Find her initial velocity,
Answer:
The time is 1.4 sec
The initial velocity is 10.7 m/s.
Explanation:
Given that,
Height = 10 m
Distance = 15 m
We need to calculate the time
Using equation of motion
[tex]s=ut-\dfrac{1}{2}gt^2[/tex]
Put the value into the formula
[tex]10=0+\dfrac{1}{2}\times9.8\times t^2[/tex]
[tex]t^2=\dfrac{2\times10}{9.8}[/tex]
[tex]t=\sqrt{\dfrac{2\times10}{9.8}}[/tex]
[tex]t=1.4\ sec[/tex]
We need to calculate the initial velocity
Using formula of velocity
[tex]v=\dfrac{d}{t}[/tex]
Put the value into the formula
[tex]v=\dfrac{15}{1.4}[/tex]
[tex]v=10.7\ m/s[/tex]
Hence, The time is 1.4 sec
The initial velocity is 10.7 m/s.
What measurements would you make (assuming you have the money, time, & equipment) to determine a star’s surface temperature? Explain your answer.
Answer:
use special filters on the telescope
Explanation:
Assuming you have access to a very high-grade telescope you would need to use special filters on the telescope that allows you to view the star's color spectrum. The color spectrum represents different levels of heat that a star is generating. This spectrum ranges from red to blue. Therefore in order to calculate the surface temperature, you would need to apply both a blue and red filter onto the telescope. Once you have these measurements you would need to compare them in order to pinpoint the correct variation of color which would give a close enough estimate of the surface temperature of the star.
A person drops a marble from the top of a skyscraper. After falling four floors the marble has gained a certain speed. How many more floors will the marble have to fall to triple this speed?
a. 8
b. 12
c. 32
d. 48
Answer:
B. 12
Explanation:
4 x 3 = 12
what is the summary for Electrons and protons
Explanation:
the link enjoy
what causes chest pain is it by eating peppery food?
Answer:
Yes that is almost always the problem!
Explanation:
Answer:
the answer is Acid reflux hope this helped!
What type of research based on approach that used to describe variables rather than to test a predicted relationship between variables?
Answer:
Correlational research can be used to see if two variables are related and to make predictions based on this relationship.
What resistance must be connected in parallel with a 633-Ω resistor to produce an equivalent resistance of 205 Ω?
Answer:
303 Ω
Explanation:
Given
Represent the resistors with R1, R2 and RT
R1 = 633
RT = 205
Required
Determine R2
Since it's a parallel connection, it can be solved using.
1/Rt = 1/R1 + 1/R2
Substitute values for R1 and RT
1/205 = 1/633 + 1/R2
Collect Like Terms
1/R2 = 1/205 - 1/633
Take LCM
1/R2 = (633 - 205)/(205 * 633)
1/R2 = 428/129765
Take reciprocal of both sides
R2 = 129765/428
R2 = 303 --- approximated
2. If a car is accelerating under a net force of 3674 N, what force must the
brakes exert to cause the car to have constant velocity?*
Answer:
I don't do physics but I think the answer would be -3674
Explanation:
Newton's 2 law of motion
HELP PLS7. A steel ball is dropped from a height of 100 meters. Which velocity-time graph best describes the
motion of the ball?
Answer:
Option C.
Explanation:
To know which velocity-time graph best describes the motion of the ball, let us calculate the velocity of the ball and the time taken for the ball to get the ground. This can be obtained as follow:
1. Determination of the velocity.
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 100 m
Final velocity (v) =.?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 100)
v² = 0 + 1960
v² = 1960
Take the square root of both side.
v = √(1960)
v = 44.27 m/s
2. Determination of the time taken.
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 100 m
Time (t) =.?
h = ½gt²
100 = ½ × 9.8 × t²
100 = 4.9 × t²
Divide both side by 4.9
t² = 100 / 4.9
Take the square root of both side
t = √(100 / 4.9)
t = 4.52 s
From the above illustration,
Initial time (t1) = 0 s
Final time (t2) = 4.52 s
Initial velocity (u) = 0 m/s
Final velocity (v) = 44.27 m/s
Thus, we can see that as the time increase, the velocity also increase. Therefore, option C gives the correct answer to the question.
Determine the mass m1m1 of block M1M1 for which the two blocks are in equilibrium (no acceleration).
This question is incomplete, the complete question is;
Two blocks, M1M1 and M2,M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2,M2, which has a mass of 25.0 kg,25.0 kg, rests on a long ramp of angle =25.0∘.θ=25.0∘. Friction can be ignored in this problem.
Determine the mass 1m1 of block M1M1 for which the two blocks are in equilibrium (no acceleration).
Answer:
the mass m1m1 of block M1M1 for which the two blocks are in equilibrium (no acceleration) is 10.57 kg
Explanation:
Given that;
m₂ = 25 kg
θ = 25°
Now at equilibrium, T = m₁g ------------------lets say equ 1
and also T = m₂gsinθ
therefore
m₁g = m₂gsinθ
m₁ = m₂sinθ
so we substitute
m₁ = 25 × sin(25)
m₁ = 25 × 0.4226
m₁ = 10.565 ≈ 10.57 kg
therefore the mass m1m1 of block M1M1 for which the two blocks are in equilibrium (no acceleration) is 10.57 kg
1. The uniform seesaw is balanced at its center of mass. The smaller boy on the right has a mass of m = 40.0 kg. What is the mass of his friend?
Answer:
Explanation:
Find the complete question attached
Using the principle of moment
Clockwise moment = Anticlockwise moment
AntiClockwise moment = M × 2.0
ACW moment = 2M
Clockwise moment = 40×4
Clockwise moment = 160kgcm
Equate both expression and calculate M
2M = 160
M = 160/2
M = 80kg
Hence the mass of his friend is 80kg
describe the energy conversion that occurs in a diesel engine
A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping distance of the car?
v² - u² = 2 a ∆x
where u = initial velocity (27 m/s), v = final velocity (0), a = acceleration (-8 m/s², taken to be negative because we take direction of movement to be positive), and ∆x = stopping distance.
So
0² - (27 m/s)² = 2 (-8 m/s²) ∆x
∆x = (27 m/s)² / (16 m/s²)
∆x ≈ 45.6 m
The stopping distance of car achieved during the braking is of 45.56 m.
Given data:
The initial speed of car is, u = 27 m/s.
The final speed of car is, v = 0 m/s. (Because car comes to stop finally)
The magnitude of deacceleration is, [tex]a = 8\;\rm m/s^{2}[/tex].
In order to find the stopping distance of the car, we need to use the third kinematic equation of motion. Third kinematic equation of motion is the relation between the initial speed, final speed, acceleration and distance covered.
Therefore,
[tex]v^{2}=u^{2}+2(-a)s[/tex]
Here, s is the stopping distance.
Solving as,
[tex]0^{2}=27^{2}+2(-8)s\\\\s = 45.56 \;\rm m[/tex]
Thus, we can conclude that the stopping distance of car achieved during the braking is of 45.56 m.
Learn more about the kinematic equation of motion here:
https://brainly.com/question/11298125
Find the gravitational potential energy of an 84 kg person standing atop Mt. Everest at an altitude of 8848 m. Use sea level as the location for y
Answer:
[tex]E=7.28\times 10^6\ J[/tex]
Explanation:
Given that,
Mass of a person, m = 84 kg
The person is standing at a top of Mt. Everest at an altitude of 8848 m
We need to find the gravitational potential energy of the person. We know that the gravitational potential energy is possessed due to the position of an object. It is given by :
E = mgh, g is the acceleration due to gravity
[tex]E=84\ kg\times 9.8\ m/s^2\times 8848\ m\\\\E=7283673.6\ J\\\\E=7.28\times 10^6\ J[/tex]
So, the gravitational potential energy of the person is [tex]7.28\times 10^6\ J[/tex]
Before digital filmmaking, what tool was used to control the speed of movement on the screen after filming?
Answer:
The appropriate response is "Optical printer ".
Explanation:
A photographic printer used mostly for optical aberrations, comprised simply of either a camera that captures the frame to expand, minimize, deform, respectively. through magnifying lenses. A projector that always, as distinct from some kind of touch printer, transferred the image to something like the printing supply.A particle is moved along the x-axis by a force that measures 10/(1+x)^2 pounds at a point x feet from the origin. Find the work (in ft-lb) done in moving the particle from the origin to a distance of 9 feet.
Answer:
9 ft*lb
Explanation:
super simple but you just have to understand that the integral is going with the curve
work = integral a to b of f(x)dx = integral 0 to 9 of 10/(1+x)^2dx = 9ft*lb
In a lightning bolt, a large amount of charge flows during a time of 1.2 x 10-3 s. Assume that the bolt can be represented as a long, straight line of current. At a perpendicular distance of 21 m from the bolt, a magnetic field of 8.4 x 10-5 T is measured. How much charged has flowed during the lightning bolt?
Answer: 10.58 C has flowed during the lightning bolt
Explanation:
Given that;
Time of flow t = 1.2 × 10⁻³
perpendicular distance r = 21 m
Magnetic field B = 8.4 x 10⁻⁵ T
Now lets consider the expression for magnetic field;
B = u₀I / 2πr
the current flow is;
I = ( B × 2πr ) / u₀
so we substitute
I = ( (8.4 x 10⁻⁵) × 2 × 3.14 × 21 ) / 4π ×10⁻⁷
= 0.01107792 / 0.000001256
= 8820 A
Hence the charge flows during lightning bolt will be;
q = It
so we substitute
q = 8820 × 1.2 × 10⁻³
q = 10.58 C
therefore 10.58 C has flowed during the lightning bolt
A truck with a mass of 1330 kg and moving with a speed of 15.0 m/s rear-ends a 805 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second.
Answer:
The Speed of the vehicles is 9.34m/s
Explanation:
For an elastic collision the two bodies move with similar velocities after collision
Given
M1=1330kg
V1=15m/s
M2=805kg
V2=0(the car is parked on neutral)
The formula is
M1V1+M2V2=(M1+M2)V
1330*15+805*0=(1330+805)V
19950+0=2135V
2135V=19950
divide both sides by 2135
V=19950/2135
V=9.34m/s
How could you separate a mixture of rocks and sand?
What type of force holds atoms together in a crystal?
Answer:
Covalent Bond
Explanation:
i took the test , mark me brainliest.
Answer: Electrical
Explanation: Atoms are tied together by electrical bonding forces.
How much energy is used by a 1000 W microwave that operates for 5
minutes?
Answer:
300000 Joules
Explanation:
Recall that the unit Watts is Joules per second, derived from the quotient of energy per unite of time. Therefore, to calculate the energy used on the given time, we need to multiply the power used (1000 W) times the time used. Then we need to express the 5 minutes in seconds to get our answer in Joules:
5 minutes = 5 * 60 seconds = 300 seconds
Final energy calculation gives:
E = 1000 W * 300 sec= 300000 Joules
calculate earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
[tex]r = \frac{a(1-E^2)}{1+Ecos\beta }[/tex] --------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
[tex]\beta[/tex] = 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
[tex]v^2 = \frac{4\pi^2 }{r_{c} }[/tex] ------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
([tex]V^2 = (\frac{4\pi^{2} }{149.626*10^9})[/tex]
therefore : V = 1.624* 10^-5 m/s
distance is constant and time increseas
Will Speed increase or decrease?
Answer:
The speed will be decrease
Find the linear velocity of a point moving with uniform circular motion, if the point covers a distance s in the given amount of time t. s
Answer:
The linear velocity is represented by the following expression: [tex]v = \frac{s}{t}[/tex]
Explanation:
From Rotation Physics we know that linear velocity of a point moving with uniform circular motion is:
[tex]v = r\cdot \omega[/tex] (Eq. 1)
Where:
[tex]r[/tex] - Radius of rotation of the particle, measured in meters.
[tex]\omega[/tex] - Angular velocity, measured in radians per second.
[tex]v[/tex] - Linear velocity of the point, measured in meters per second.
But we know that angular velocity is also equal to:
[tex]\omega = \frac{\theta}{t}[/tex] (Eq. 2)
Where:
[tex]\theta[/tex] - Angular displacement, measured in radians.
[tex]t[/tex] - Time, measured in seconds.
By applying (Eq. 2) in (Eq. 1) we get that:
[tex]v = \frac{r\cdot \theta}{t}[/tex] (Eq. 3)
From Geometry we must remember that circular arc ([tex]s[/tex]), measured in meters, is represented by:
[tex]s = r\cdot \theta[/tex]
[tex]v = \frac{s}{t}[/tex]
The linear velocity is represented by the following expression: [tex]v = \frac{s}{t}[/tex]
PLEASE PROVIDE AN EXPLANATION!!
THANK YOU.
Answer:
(a) 3.43 m/s
(b) 3.43 m/s
(c) 95.8 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
where P is pressure (either absolute or gauge), ρ is density, v is velocity, g is acceleration due to gravity, and h is elevation.
(a) Let's choose point 1 at the surface of the fluid in the container, and point 2 at point Z at the exit of the tube. I'll say 0 elevation is at point Z, and I'll use gauge pressure.
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
0 Pa + ½ ρ (0 m/s)² + ρ (9.8 m/s²) (0.60 m) = 0 Pa + ½ ρ v² + 0
ρ (9.8 m/s²) (0.60 m) = ½ ρ v²
5.88 m²/s² = ½ v²
v = 3.43 m/s
(b) The tube's cross section is constant, so the fluid's speed is the same at all points in the tube. v = 3.43 m/s.
(c) Use Bernoulli equation again, choosing point 2 to be at Y. I'll say 0 elevation is at the surface of the fluid, and again use gauge pressure.
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
0 + 0 + 0 = P + ½ (700 kg/m³) (3.43 m/s)² + (700 kg/m³) (9.8 m/s²) (0.20 m)
0 = P + 4116 Pa + 1372 Pa
P = -5488 Pa
The gauge pressure is -5488 Pa, so the absolute pressure is 101,300 Pa + -5488 Pa = 95812 Pa, or approximately 95.8 kPa.
What does g stand for
Group of answer choices
gravity
The acceleration of gravity
The force of gravity
Answer:
the acceleration of gravity.
Answer:
g stand for the acceleration of gravity .
Explanation: