The nylon rope stretches by 0.637 meters, or 63.7 centimeters when the mountain climber hangs 35.0 meters below the rock outcropping.
F = m * g
F = 65.0 kg * 9.81 m/s²
F = 637.65 N
The cross-sectional area of the rope can be calculated as:
A = πr²
A = π(0.800 cm/2)²
A = 0.5027 cm² = 5.027 ×[tex]10^{-5[/tex]m²
Now we can use Young's modulus to calculate the stretch of the rope:
Y = stress/strain
stress = F/A
strain = ΔL/L0
where ΔL is the change in the length of the rope, and L0 is the original length.
Assuming Young's modulus for nylon is 2.0 GPa or 2.0 ×[tex]10^{9}[/tex] N/m², we can solve for the stretch:
ΔL/L0 = stress/Y = (F/A)/(Y)
ΔL/L0 = (637.65 N)/(5.027 × [tex]10^-5[/tex]m² * 2.0 ×[tex]10^{9}[/tex]N/m²)
ΔL/L0 = 0.637 m
Cross-sectional area refers to the area of a two-dimensional shape that is perpendicular to an axis or direction of interest. For example, if a cylinder is standing upright, its cross-sectional area would be the circle formed by the intersection of the cylinder and a plane perpendicular to its height.
The cross-sectional area is important in a variety of physical contexts, including fluid mechanics, electrical engineering, and materials science. In fluid mechanics, the cross-sectional area of a pipe or channel is used to calculate flow rate and velocity. In electrical engineering, the cross-sectional area is used to determine the current-carrying capacity of a wire or cable. In materials science, the cross-sectional area is used to calculate stress and strain in materials subjected to external forces.
To learn more about Cross-sectional area visit here:
brainly.com/question/20532494
#SPJ4
If instead a material with an index of refraction of 1.90 is used for the coating, what should be the minimum non-zero thickness of this film in order to minimize reflection.
The minimum non-zero thickness of a film with an index of refraction of 1.90 can be calculated using the same formula as for the case of a film with an index of refraction of 1.50.
t = (m + 1/2) * λ / (2 * n)
t = (m + 1/2) * λ / (2 * n) = (m + 1/2) * 500 nm / (2 * 1.90) ≈ 132 nm
Refraction is the bending of light as it passes through a material with a different refractive index. The refractive index is a measure of how much a material can slow down light as it travels through it. When light enters a material with a different refractive index, it changes direction due to the change in speed. This change in direction is called refraction.
The amount of refraction that occurs depends on the angle at which the light enters the material, the refractive index of the material, and the wavelength of the light. Refraction is responsible for many optical phenomena, such as the way lenses focus light in eyeglasses, the formation of rainbows, and the appearance of objects underwater.
To learn more about Refraction visit here:
brainly.com/question/14760207
#SPJ4
A hockey puck (mass = 4 kg) leaves the players stick with a speed of 15 m/s and slides on the ice for 70 meters before coming to rest. What is the magnitude of the acceleration on the puck? m/s^2 What is the friction force exerted on the puck due to the ice? N What is the normal force on the puck? N What is the friction coefficient between the puck and the ice? (unitless)
The solve for the magnitude of the acceleration on the puck, we can use the formula v^2 = u^2 + 2as where v is the final velocity (which is zero since the puck comes to rest) a = (v^2 - u^2)/2s a = (0^2 - 15^2)/ (2 x 70) a = -3.06 m/s^2 Since the acceleration is negative, this means the puck is slowing down.
The find the friction force exerted on the puck due to the ice, we can use the formula f = Un where f is the friction force, u is the coefficient of friction, and N is the normal force (which we need to find). To find the normal force, we can use the formula N = mg where m is the mass of the puck (4 kg), and g is the acceleration due to gravity
(9.8 m/s^2). N = 4 x 9.8 N = 39.2 N
Now we can substitute the normal force and coefficient of friction into the formula for friction force.
f = Un f = u x 39.2
To find the coefficient of friction, we need to know the type of ice the puck is sliding on. For example, fresh ice has a lower coefficient of friction than rough ice. Without this information, we cannot determine the coefficient of friction. In summary, the magnitude of the acceleration on the puck is.
-3.06 m/s^2.
The normal force on the puck is 39.2 N. We cannot determine the friction force or coefficient of friction without additional information about the ice.
learn more about puck here.
https://brainly.com/question/13782483
#SPJ11
a speedboat has a mass of 5.0x10 2 kg starting at rest, it travels to 220 m/s in 3.0 s. find the net force on the boat
The net force on the boat is 3.67 x 10⁴ N.
We can use the equation F=ma, where F is the net force, m is the mass, and a is the acceleration. First, we need to find the acceleration of the boat using the equation a = (vf - vi) / t, where vf is the final velocity, vi is the initial velocity (which is 0 in this case), and t is the time. Plugging in the given values, we get:
a = (220 m/s - 0 m/s) / 3.0 sa = 73.3 m/s²Now, we can find the net force using the equation F=ma:
F = (5.0x10² kg)(73.3 m/s²)F = 3.67 x 10⁴ NTherefore, the net force on the boat is 3.67 x 10⁴ N.
To learn more about net force, here
https://brainly.com/question/29261584
#SPJ1
An object slides down a frictionless 33 degree incline whose vertical height is 70.2 cm. How fast is it going in meters/second when it reaches the bottom
When it reaches the bottom of the incline, the object will be going at a speed of approximately 3.73 meters/second.
To find the speed of the object when it reaches the bottom of the frictionless 33-degree incline, you can use the conservation of mechanical energy principle. The potential energy (PE) at the top is converted into kinetic energy (KE) at the bottom.
First, let's convert the vertical height from centimeters to meters: 70.2 cm = 0.702 m
Next, we need to find the gravitational potential energy (PE) at the top of the incline, which is given by the formula: PE = mgh, where m is the mass of the object, g is the acceleration due to gravity (9.81 m/s²), and h is the vertical height (0.702 m). Note that since we are looking for the final speed and not the kinetic energy itself, the mass will cancel out, so we don't need to know its value.
When the object reaches the bottom, all of its potential energy is converted into kinetic energy (KE), which is given by the formula: KE = 0.5 * m * v², where v is the speed we're looking for.
Since the mass cancels out, we can equate the potential energy and kinetic energy:
mgh = 0.5 * m * v²
Now, we can solve for v:
v² = 2 * g * h
v = √(2 * 9.81 * 0.702)
v ≈ 3.73 m/s
So, the object will be going approximately 3.73 meters/second when it reaches the bottom of the incline.
More on speed: https://brainly.com/question/12615415
#SPJ11
Once a parachutist has reached terminal velocity, the net force (equaling gravity down [negative] plus air resistance up [positive]) acting on her is ...
Once a parachutist has reached terminal velocity, the net force (equaling gravity down [negative] plus air resistance up [positive]) acting on her is The net force acting on the parachutist at terminal velocity is zero.
Terminal velocity is the constant speed that a freely falling object eventually reaches when the resistance of the medium (air in this case) prevents further acceleration. At this point, the force of gravity pulling the parachutist down (negative) is equal to the force of air resistance pushing up against her (positive). As these forces are equal and opposite, they cancel each other out, resulting in a net force of zero. This means that the parachutist will continue to fall at a constant speed without accelerating.
learn more about terminal velocity
https://brainly.com/question/30466634
#SPJ11
What value do technicians on ship B get by measuring the speed of the light emitted by ship A's headlight
The value technicians on ship B get by measuring the speed of light emitted by ship A's headlight is approximately 299,792 kilometers per second (km/s), which is the constant speed of light in a vacuum.
The speed of light is a fundamental constant in the universe and does not change regardless of the relative motion of the observer (technicians on ship B) and the source of light (ship A's headlight).
The speed of light in a vacuum is always approximately 299,792 km/s, and this value will be measured by the technicians on ship B.
1. Technicians on ship B will use an appropriate instrument to measure the speed of light emitted by ship A's headlight.
2. The instrument will detect the light waves from ship A's headlight.
3. The speed of light will be calculated based on the time it takes for the light waves to travel a known distance.
4. The result will be the constant speed of light in a vacuum, approximately 299,792 km/s.
By measuring the speed of light emitted by ship A's headlight, technicians on ship B will obtain the constant value of approximately 299,792 km/s, which is the speed of light in a vacuum. This value does not change due to the relative motion of the observer and the source of light.
For more information on light emission kindly visit to
https://brainly.com/question/29352228
#SPJ11
In an extrasolar planetary system which contains a single planet, the star is observed to wobble because we cannot see the planet. One wobble of the star takes 11 years. How long does it take the planet to orbit its star
The time it takes for the is equal to the period of the star's wobbling motion. In this case, since one wobble of the star takes 11 years, it can be inferred that the planet's orbital period is also 11 years.
In an extrasolar planetary system with a single planet, the observed wobble of the star is due to the gravitational interaction between the star and the planet. The star's wobble period, which is 11 years in this case, directly corresponds to the planet's orbital period. Therefore, it takes the planet 11 years to orbit its star.
More on planet/stars: https://brainly.com/question/11394962
#SPJ11
Three 5 M resistors are linked in series. If a 6.0 V battery is attached, what will be the current through the circuit?
The current flowing through the circuit is 0.4 µA
The current through the circuit can be calculated using Ohm's Law, which states that the current (I) is equal to the voltage (V) divided by the resistance (R). In a series circuit, the resistances add up, so the total resistance is equal to the sum of the individual resistances.
Using this formula, we can find the current (I) in the circuit:
Total resistance (R) = R1 + R2 + R3 = 5 MΩ + 5 MΩ + 5 MΩ = 15 MΩ
Voltage (V) = 6.0 V
Current (I) = V / R = 6.0 V / 15 MΩ = 0.4 µA
Therefore, the current through the circuit is 0.4 µA.
To learn more about current, here
https://brainly.com/question/23862724
#SPJ1
An engine outputs 100.0 J of heat after taking in 125 J of heat in a cycle. How much work does it do per cycle
To determine the work done by an engine per cycle, we need to apply the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat supplied to the system minus the work done by the system. In mathematical terms:
ΔU = Q - W
where ΔU is the change in internal energy, Q is the heat supplied to the system, and W is the work done by the system.
In this case, the engine takes in 125 J of heat and outputs 100 J of heat, which means that the engine is not a perfect machine and some of the energy is lost as waste heat. We can calculate the change in internal energy as follows:
ΔU = Q_in - Q_out
ΔU = 125 J - 100 J
ΔU = 25 J
This means that the engine has gained 25 J of internal energy during the cycle. We can then rearrange the first law of thermodynamics equation to solve for the work done by the engine:
W = Q_in - Q_out - ΔU
W = 125 J - 100 J - 25 J
W = 0 J
This indicates that the engine has not done any work during the cycle since the work done is equal to zero. Therefore, the engine is not a heat engine but rather a heat pump or refrigerator, which transfers heat from a colder reservoir to a hotter one, consuming work in the process.
for more such questions on thermodynamics
https://brainly.com/question/13059309
#SPJ11
an airplane is flying at an airspeed of 345 mph at a heading of 124 degrees. a wind of 23 mph is blowing from the west. find the groundspeed(magnitude) and the course of the airplane
Represent the airplane's airspeed as a vector. The magnitude is 345 mph, and the direction is 124 degrees (measured clockwise from due north). Let's call this vector A.
2. Represent the wind speed as a vector. The magnitude is 23 mph, and the direction is from the west, which is 270 degrees (measured clockwise from due north). Let's call this vector W.
3. Find the components of both vectors A and W. We can do this using trigonometry:
A_x = 345 * cos(124°)
A_y = 345 * sin(124°)
W_x = 23 * cos(270°)
W_y = 23 * sin(270°)
4. Add the components of vectors A and W to find the components of the groundspeed vector G:
G_x = A_x + W_x
G_y = A_y + W_y
5. Calculate the magnitude of the groundspeed vector G:
Groundspeed = |G| = sqrt(G_x^2 + G_y^2)
6. Calculate the course of the airplane (the angle of vector G):
Course = arctan(G_y / G_x)
Learn more about magnitude here : brainly.com/question/14452091
#SPJ11
A 245-kg object and a 545-kg object are separated by 5.00 m. (a) Find the magnitude of the net gravitational force exerted by these objects on a 32.0-kg object placed midway between them.
The magnitude of the net gravitational force exerted by the 245-kg and 545-kg objects on a 32.0-kg object placed midway between them is 0.158 N.
To find the magnitude of the net gravitational force exerted by the 245-kg and 545-kg objects on a 32.0-kg object placed midway between them, we can use the formula:
F = G(m₁m₂)/r²
where F is the gravitational force, G is the gravitational constant (6.67 x 10⁻¹¹ N*m²/kg²), m₁ and m₂ are the masses of the two objects, and r is the distance between them.
First, we need to find the distance between the 32.0-kg object and each of the other two objects.
Since the 32.0-kg object is placed midway between them, the distance to each object is 2.50 m.
Next, we can calculate the gravitational force between the 32.0-kg object and each of the other two objects using the formula above.
For the 245-kg object:
F₁ = G(m₁m₂)/r²
= (6.67 x 10⁻¹¹ N*m²/kg²) * (32.0 kg * 245.0 kg) / (2.50 m)²
= 0.129 N
And for the 545-kg object:
F₂ = G(m₁m₂)/r²
= (6.67 x 10⁻¹¹ N*m²/kg²) * (32.0 kg * 545.0 kg) / (2.50 m)²
= 0.287 N
Since the two gravitational forces are in opposite directions, we need to subtract them to find the net gravitational force:
F(net) = F₂ - F₁
= 0.287 N - 0.129 N
= 0.158 N
Learn more about gravitational force:
https://brainly.com/question/72250
#SPJ11
A pumpkin pie in a 8.50 in diameter plate is placed upon a rotating tray. Then, the tray is rotated such that the rim of the pie plate moves through a distance of 158 in. Express the angular distance that the pie plate has moved through in revolutions, radians, and degrees.
The angular distance that the pie plate has moved through is approximately:- 5.91 revolutions- 37.18 radians- 2129 degrees
The circumference of the pie plate can be calculated as:
C = πd = π(8.5 in) ≈ 26.7 in
To find the angular distance that the pie plate has moved through, we need to know the fraction of a complete revolution that corresponds to a linear distance of 158 in on the circumference of the pie plate. We can use the formula:
θ = s / r
where:
θ = angular distance in radians
s = linear distance
r = radius
The radius of the pie plate is half of the diameter, or:
r = 8.5 in / 2 = 4.25 in
Using this radius and the given linear distance, we get:
θ = s / r = 158 in / 4.25 in ≈ 37.18 radians
To convert radians to revolutions, we can use the fact that 1 revolution is equivalent to 2π radians:
θ = 37.18 radians = 37.18 / (2π) revolutions ≈ 5.91 revolutions
To convert radians to degrees, we can use the fact that 180 degrees is equivalent to π radians:
θ = 37.18 radians = (37.18 radians) * (180 degrees / π radians) ≈ 2129 degrees.
Learn more about angular distance here:
https://brainly.com/question/13275279
#SPJ11
The mass of an electric car is 900 kg including the passengers. A single motor mounted on the front wheels drives the car, and the radius of the wheel is 0.3 m. The car is going downhill at a speed of 50 km/hr, and the slope of the hill is 30 degree. The friction coefficient of the road surface at a given weather condition is 0.5. Ignore the motor losses and compute the power generated by the electric machine
The electric motor produces around 10.4 kW of power.
the following example: (900 kg x 9.81 m/s2 x sin(30) = 4414.5 N) The force operating on the car as it descends the slope is equal to the weight of the car multiplied by the sine of the slope angle. The friction force is calculated as follows: (900 kg x 9.81 m/s2 x 0.5) = 4414.5 N. The friction force is generated by the car's weight multiplied by the friction coefficient. As a result, there is no acceleration and there is no net force acting on the car. The frictional force times the vehicle's speed, or (4414.5 N) x (50 km/hr x 1000 m/km / 3600 s/hr), equals the power produced by the motor, or 10.4 kW.
learn more about electric motor here:
https://brainly.com/question/20317436
#SPJ11
Calculate the centripetal force on the end of a 74-m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the mass is 4 kg.
The centripetal force on the end of a wind turbine blade is given by the equation Fc = mω²r, where Fc is the centripetal force, m is the mass, ω is the angular velocity, and r is the radius of the blade. In this case, the radius of the blade is given as 74 m, and the angular velocity is 0.5 rev/s, which is equivalent to 3.14 rad/s. The mass of the blade is given as 4 kg. Plugging these values into the equation, we get:
Fc = (4 kg) x (3.14 rad/s)² x (74 m) = 878 N
Therefore, the centripetal force on the end of a 74-m wind turbine blade rotating at 0.5 rev/s with a mass of 4 kg is approximately 878 N.
To calculate the centripetal force on the end of a 74-meter wind turbine blade, we first need to determine its linear velocity. Here are the steps to follow:
1. Convert the rotational speed to radians per second: 0.5 rev/s * (2π radians/rev) = π radians/s
2. Calculate linear velocity (v) using the formula: v = rω, where r is the radius (74 meters) and ω is the angular velocity (π radians/s)
v = 74 * π = 74π meters/s
3. Calculate centripetal acceleration (a_c) using the formula: a_c = v²/r
a_c = (74π)² / 74 = 74π² m/s²
4. Finally, calculate the centripetal force (F_c) using the formula: F_c = ma_c, where m is the mass (4 kg)
F_c = 4 * 74π² = 296π² N
So, the centripetal force on the end of the 74-meter wind turbine blade rotating at 0.5 rev/s with a mass of 4 kg is approximately 296π² Newtons.
To know more about centripetal visit
https://brainly.com/question/17123770
#SPJ11
A current flowing through you of more than 5 ma is considered dangerous. Why do we see warnings about high voltage, rather than high current
Suppose a planet is discovered orbiting a distant star with 16 times the mass of the Earth and 1/16 its radius. How does the escape speed on this planet compare with that of the Earth? Express your answer using two significant figures. E AO OE?
The escape speed on the discovered planet is[tex]1.6 * 10^1[/tex]times greater than that of Earth.
To determine the escape speed of the discovered planet, we can use the escape speed formula:
[tex]v_e = \sqrt{ (2GM/R)}[/tex]
where v_e is the escape speed, G is the gravitational constant, M is the mass of the planet, and R is the planet's radius.
First, let's find the ratio of escape speeds between the discovered planet and Earth:
ratio = ([tex](v_e_planet) / (v_e_Earth) = \sqrt{[(G * M_planet * R_Earth) / (G * M_Earth * R_planet)]}[/tex]
Since the mass of the discovered planet is 16 times the mass of Earth (M_planet = 16M_Earth) and its radius is 1/16 that of Earth (R_planet = R_Earth/16), we can plug these values into the equation:
ratio = [tex]\sqrt{[(16M_Earth * R_Earth) / (M_Earth * R_Earth/16)]}[/tex]
Simplify the equation:
ratio = [tex]\sqrt{16*16} = \sqrt{256}[/tex]
The ratio of escape speeds is [tex]\sqrt{256}[/tex], which equals 16. Therefore, the escape speed on the discovered planet is 16 times greater than that of Earth. Expressing this using two significant figures, we have:
The escape speed on the discovered planet is[tex]1.6 * 10^1[/tex]times greater than that of Earth.
Learn more about earth here:
https://brainly.com/question/13587338
#SPJ11
A resistor dissipates 1.80 W when the rms voltage of the emf is 9.50 V . Part A At what rms voltage will the resistor dissipate 11.5 W
The rms voltage required for a resistor to dissipate 11.5 W is 21.8 V.
The power (P) dissipated by a resistor is given by P = V²/R, where V is the voltage across the resistor and R is the resistance. We are given that the resistor dissipates 1.80 W when the rms voltage is 9.50 V, so we can write:
1.80 watt(W) = (9.50 V)²/R
Solving for R, we get:
R = (9.50 V)²/1.80 W = 49.97 Ω
To find the rms voltage required for the resistor to dissipate 11.5 W, we can use the same equation:
11.5 W = V²/49.97 Ω
Solving for V, we get:
V = √(11.5 W * 49.97 Ω) = 21.8 V
learn more about rms voltage here:
https://brainly.com/question/13507291
#SPJ11
A wheel is rolling with a linear speed of 5.00 m/s. If the wheel's radius is 0.08 m, what is the wheel's angular velocity
The angular velocity of a wheel rolling with a linear speed of 5.00 m/s and with a radius of 0.08 m is 62.5 radians per second.
To calculate the wheel's angular velocity, we need to first understand the relationship between speed and angular velocity. Angular velocity is the rate at which an object rotates around its axis, and it is measured in radians per second. Linear speed, on the other hand, is the rate at which an object moves in a straight line and is measured in meters per second.
The formula to relate speed and angular velocity is given by:
Angular Velocity (ω) = Linear Speed (v) / Radius (r)
The given linear speed (v) is 5.00 m/s, and the wheel's radius (r) is 0.08 m.
1. Plug the values into the formula:
ω = 5.00 m/s / 0.08 m
2. Calculate the angular velocity:
ω = 62.5 rad/s
Therefore, the wheel's angular velocity is 62.5 radians per second.
In summary, when a wheel is rolling with a linear speed of 5.00 m/s and has a radius of 0.08 m, the wheel's angular velocity is 62.5 radians per second.
Learn more about angular velocity at: https://brainly.com/question/6860269
#SPJ11
Which power source has the advantage of being available at the scene and tools that are lightweight?
In terms of power sources that are available at the scene and lightweight, one option would be battery-powered tools.
Battery-powered tools provide a reliable and convenient source of power without the need for cords or generators. These tools are often designed to be lightweight, making them easy to transport and use on-site. Additionally, batteries can be recharged quickly, allowing for continuous use without the need for downtime. Some battery-powered tools even have the ability to switch between multiple batteries, ensuring that there is always a backup power source available. While battery-powered tools may not be as powerful as some other options, they offer a great balance between power and portability. For those who require more power, gas-powered tools may also be an option. However, these tools are typically heavier and require fuel, making them less portable. Ultimately, the choice of power source will depend on the specific needs of the task at hand, but for those looking for a lightweight and readily available power source, battery-powered tools are a great option to consider.Learn more about battery at: https://brainly.com/question/26466203
#SPJ11
Consider the temperatures, masses, average velocities, and average kinetic energy of the three kinds of gas in the mixture. What do they have in common
They all have the same average kinetic energy, which is directly proportional to their temperature. This is a consequence of the kinetic theory of gases, which states that the average kinetic energy of gas molecules is directly proportional to the temperature of the gas.
The masses and average velocities of the gases, on the other hand, can vary widely depending on the type of gas. Heavier gases, such as carbon dioxide, will have lower average velocities compared to lighter gases, such as helium, at the same temperature. However, despite these differences, all gases in the mixture will have the same average kinetic energy as long as they are at the same temperature. This is an important principle in thermodynamics, which helps us understand the behaviour of gases under different conditions.
Learn more about velocity here:
https://brainly.com/question/17127206
#SPJ11
1. Describe Faraday’s Law. 2. Describe Lenz’s Law. 3. According to Faraday’s Law and Lenz’s Law, what should happen to the current in a coil of wire when the north pole of a bar magnet is moved toward it?
Faraday's Law states that a change in magnetic flux induces an electromotive force (EMF) in a conductor, while Lenz's Law describes the direction of the induced EMF. According to both laws, when the north pole of a bar magnet moves toward a coil of wire, an induced current will flow in a direction that opposes the change in magnetic flux.
1. Faraday's Law: This law states that the electromotive force (EMF) induced in a conductor is proportional to the rate of change of magnetic flux through the conductor. Mathematically, it is represented as EMF = -dΦ/dt, where Φ is the magnetic flux and t is time.
2. Lenz's Law: This law determines the direction of the induced EMF and states that the induced EMF will act in such a way as to oppose the change in magnetic flux that caused it. It is a consequence of the conservation of energy.
3. Combining Faraday's and Lenz's Laws: When the north pole of a bar magnet is moved toward a coil of wire, the magnetic flux through the coil increases. According to Lenz's Law, the induced current will flow in a direction that opposes this increase in magnetic flux. This means that the induced current will create its own magnetic field with a south pole facing the approaching north pole of the bar magnet, opposing the change in magnetic flux.
Learn more about flux here:
https://brainly.com/question/29665619
#SPJ11
Find the direction of the magnetic field that the electron produces at the location of the nucleus (treated as a point).
The direction of the magnetic field that the electron produces at the location of the nucleus depends on the direction of the electron's velocity vector.
To find the direction of the magnetic field produced by an electron a, we can use the right-hand rule.
First, we determine the direction of the electron's velocity vector. If the electron is moving towards the nucleus, the velocity vector points towards the nucleus. If the electron is moving away from the nucleus, the velocity vector points away from the nucleus.
Next, we curl our right hand fingers in the direction of the electron's velocity vector.
Thus, this represents the direction of the magnetic field lines produced by the electron.
To know more about magnetic field refer here:
https://brainly.com/question/14848188
#SPJ11
How long does it take for a radio wave to travel once around the Earth in a great circle, close to the planet's surface
A radio wave near to the planet's surface travels once around the Earth in a big circle in around 133.13 milliseconds.
This is due to the fact that the Earth's circumference is around 40,075 kilometres, and that radio waves move at about 299,792,458 metres per second at the speed of light in a vacuum. As a result, the formula: can be used to determine how long it takes a radio wave to travel in a vast circle near the surface of the Earth.
Time = Speed x Distance
The distance in this instance is 40,075 km, or 40,075,000 metres. The time obtained by multiplying this by the speed of light is roughly 0.13313 seconds, or 133.13 milliseconds.
learn more about radio here:
https://brainly.com/question/866150
#SPJ11
Far out in space, away from any significant mass that would cause gravitational effects, a mass is suspended by a rope. What is the tension in the rope?
The mass is located far out in space, away from any significant mass that would cause gravitational effects.
Since there is no gravitational force acting on the mass, the tension in the rope will be zero. The rope does not need to support any weight, as the mass is effectively weightless in the absence of gravitational forces.
The tension in the rope depends on the mass and acceleration of the suspended object, as well as the shape and rotation of the rope. If the object is not accelerating and the rope is straight and horizontal, then the tension is zero. If the object is accelerating or the rope is curved or vertical, then the tension is non-zero and varies along the length of the rope.
One way to find the tension at any point in the rope is to apply Newton’s second law to a small segment of the rope and consider the forces acting on it. For example, if the rope is whirling in a circle with angular velocity ω and linear mass density μ, then the tension at a distance r from the center of rotation is given by T® = μrω.
to learn more about gravitational force click here:
brainly.com/question/3009841
#SPJ11
rotational dynamics: a torque of 12 n ∙ m is applied to a solid, uniform disk of radius 0.50 m. if the disk accelerates at 1.6 rad/s2 what is the mass of the disk?
The required mass of the disk is approximately 60 kg.
To find the mass of the disk, we can use the formula relating torque, moment of inertia, and angular acceleration:
Torque (τ) = Moment of inertia (I) × Angular acceleration (α)
The moment of inertia of a solid disk is given by:
I = (1/2) × m × r²
where m is the mass of the disk and r is the radius of the disk.
Given:
Torque (τ) = 12 N·m
Radius (r) = 0.50 m
Angular acceleration (α) = 1.6
We can rewrite the torque equation as:
τ = (1/2) × m × r² × α
Substituting the given values:
12 = (1/2) × m × (0.50)² × 1.6
12 = 0.2m
m ≈ 60 kg
Therefore, the mass of the disk is approximately 60 kg.
Learn more about rotational dynamics here:
https://brainly.com/question/30703111
#SPJ12
When the values of source voltage and total current are known,____ in a series resistive-capacitive circuit can be calculated by multiplying the voltage and current.
When the values of source voltage and total current are known, the true power (P) in a series resistive-capacitive (RC) circuit can be calculated by multiplying the voltage (V) and current (I).
In an RC circuit, resistive components dissipate power as heat, while capacitive components store energy without dissipating it as heat. The true power is only associated with the resistive components of the circuit.
To calculate the true power in an RC circuit, you can use the formula P = V x I, where P is the true power, V is the source voltage, and I is the total current flowing through the circuit. The true power is measured in watts (W), voltage is measured in volts (V), and current is measured in amperes (A).
Keep in mind that this calculation will provide the power only for the resistive components of the circuit, not the capacitive components. It is essential to understand the difference between the two types of components and their effects on power dissipation and energy storage in a series RC circuit.
To know more about voltage, refer here:
https://brainly.com/question/2364325#
#SPJ11
Complete question
When the values of source voltage and total current are known,____ in a series resistive-capacitive circuit can be calculated by multiplying the voltage and current.
A performer seated on a trapeze is swinging back and forth with a period of 8.68 s. If she stands up, thus raising the center of mass of the trapeze performer system by 36.6 cm, what will be the new period of the system
The performer stands up on the trapeze, the center of mass of the system shifts upwards, causing a change in the moment of inertia of the system. As a result, the new period of the system will be different from the initial period. To calculate the new period, we can use the conservation of mechanical energy principle, which states that the total mechanical energy of the system remains constant.
The highest point of the swing, all of the potential energy of the system is converted into kinetic energy, and at the lowest point, all of the kinetic energy is converted back into potential energy. Using this principle, we can equate the initial and final mechanical energies of the system initial mechanical energy = final mechanical energy (1/2) mv^2 + mgs = (1/2) mv'^2 + mg (h + Δh) where m is the mass of the performer and trapeze, v is the initial velocity of the system, h is the initial height of the center of mass, v' is the final velocity of the system, h + Δh is the final height of the center of mass (36.6 cm higher than the initial height), and g is the acceleration due to gravity. We can rearrange this equation to solve for the final velocity of the system v' = sqrt [(2gh + 2gΔh) / m] Substituting the values given in the problem, we get v' = sqrt [(2(9.8 m/s^2) (0.5 m) + 2(9.8 m/s^2) (0.366 m)) / m] = 4.26 m/s The new period of the system can then be calculated using the forms T = 2πL / v' where L is the length of the pendulum Assuming that the length of the pendulum remains constant, we can calculate the new period T = 2π(0.5 m) / 4.26 m/s = 2.93 s Therefore, the new period of the system is approximately 2.93 seconds.
learn more about trapeze here.
https://brainly.com/question/29761433
#SPJ11
Two cars approach an extremely icy four-way perpendicular intersection. Car A travels northward at 30 m/s and car B is travelling eastward. They collide and stick together, traveling at 28 degrees north of east. What was the initial velocity of car B
Using vector addition, the initial velocity of car B can be calculated as 34 m/s at 62 degrees north of east, assuming no external forces. Three keywords: vector addition, initial velocity, and external forces.
To calculate the initial velocity of Car B, we need to use vector addition. We know the initial velocity of Car A is 30 m/s, travelling northward. The final velocity of the combined cars is at 28 degrees north of east, but we need to break this down into its northward and eastward components to add it to Car A's velocity. Using trigonometry, we can find that the eastward component of the final velocity is 22.2 m/s, and the northward component is 16.3 m/s. We can then use vector addition to find the resultant velocity of the two cars, which is the initial velocity of Car B. Assuming no external forces acted upon the cars during the collision, we can use the principle of conservation of momentum to determine that the total momentum before the collision was equal to the total momentum after the collision. Thus, we can use vector addition to determine the initial velocity of Car B as 34 m/s at 62 degrees north of east.
Learn more about initial velocity here:
https://brainly.com/question/9163788
#SPJ11
The resistanceless inductor is connected across the ac source whose voltage amplitude is 26.5 V and angular frequency is 1300 rad/s . Find the current amplitude if the self-inductance of the inductor is
The current amplitude is 0.02038j A / (rad/s * L) in a circuit with a resistanceless inductor connected across an AC source with a voltage amplitude of 26.5 V and an angular frequency of 1300 rad/s.
To find the current amplitude in an AC circuit with a resistanceless inductor, we can use Ohm's law and the relationship between voltage, current, and inductance in an inductor.
Ohm's law states that the current (I) in a circuit is equal to the voltage (V) divided by the impedance (Z). In the case of an inductor, the impedance is given by the formula:
Z = jωL
Where:
Z is the impedance
j is the imaginary unit (√(-1))
ω is the angular frequency
L is the self-inductance of the inductor
Given that the voltage amplitude (V_amplitude) is 26.5 V and the angular frequency (ω) is 1300 rad/s, we need to find the current amplitude (I_amplitude).
First, we can calculate the impedance:
Z = jωL
Substituting the given values:
Z = j * 1300 rad/s * L
Now, we can use Ohm's law to find the current amplitude:
I_amplitude = V_amplitude / Z
Substituting the values:
I_amplitude = 26.5 V / (j * 1300 rad/s * L)
To simplify this expression, we can multiply the numerator and denominator by the conjugate of the denominator, which is -j:
I_amplitude = 26.5 V * (-j) / (j * -j * 1300 rad/s * L)
Simplifying further:
I_amplitude = -26.5j V / (-1300 rad/s * L)
I_amplitude = 0.02038j V / (rad/s * L)
Therefore, the current amplitude is 0.02038j A / (rad/s * L) in a circuit with a with a voltage amplitude of 26.5 V and an angular frequency of 1300 rad/s.
To learn more about current, refer below:
https://brainly.com/question/31657860
#SPJ11
A proton is located at a distance of 0.431 m from a point charge of 8.49 C. The repulsive electric force moves the proton until it is at a distance of 1.61 m from the charge. Suppose that the electric potential energy lost by the system is carried off by a photon that is emitted during the process. What is its wavelength
By using relationship between electric potential energy, electric force, and distance the wavelength of the photon emitted during the process is 705 nm.
To solve this problem, we need to use the relationship between electric potential energy, electric force, and distance:
ΔPE = q * ΔVΔV = - ∫ E * drF = k * q1 * q2 / [tex]r^{2}[/tex] where ΔPE is the change in electric potential energy, q is the charge, ΔV is the change in electric potential, E is the electric field, r is the distance between the charges, F is the electric force, k is the Coulomb constant.
We can use the electric force equation to find the initial force between the proton and the point charge:
[tex]F1 = k * q1 * q2 / r1^{2}F1[/tex]
[tex]= 9 * 10^{9} * (1.6 * 10^{-19}) *\frac{ (8.49)}{(0.431)^{2}F1 }[/tex]
[tex]= 3.67 * 10^{-8} N[/tex] Next, we can use the work-energy principle to find the change in electric potential energy:
ΔPE = W = F1 * dΔPE
[tex]= (3.67 * 10^{-8}) * (1.61 - 0.431)ΔPE[/tex]
[tex]= 2.84 * 10^{-8} J[/tex] Since the energy is carried off by a photon, we can use the equation: E = hc/λwhere E is the energy of the photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.
We can solve for the wavelength by rearranging the equation : We can find the energy of the photon by using the change in electric potential energy:
λ = hc/E
E = ΔPEλ = hc/ΔPEλ
[tex]= (6.63 * 10^{-34} J s) *\frac{(3 * 10^{8} m/s)}{(2.84 * 10^{-8} J)λ }[/tex]
[tex]= 7.05 * 10^{-7} m[/tex] or 705 nm
Therefore, the wavelength of the photon emitted during the process is 705 nm.
To know more about wavelength Visit:
https://brainly.com/question/31143857
#SPJ11