At 1 atm and 25 degrees C, NO2 with an initial concentration of 1.00 M is 0.0033% decomposed into NO and O2. Calculate the value of the equilibrium constant for the reaction. 2NO2(g) goes to 2NO (g) + O2(g)

Answers

Answer 1

The equilibrium constant for the reaction at 1 atm and 25°C is approximately 1.09 × 10^-11.

To calculate the equilibrium constant (Kc) for this reaction, we need to use the equation:

Kc = [NO]^2[O2]/[NO2]^2

Since the initial concentration of NO2 is 1.00 M, and 0.0033% of it is decomposed, the concentration of NO2 at equilibrium is:

[NO2] = 1.00 M - (0.0033/100) x 1.00 M = 0.9967 M

Since the stoichiometry of the reaction is 2:2:1 for NO2, NO, and O2 respectively, the concentrations of NO and O2 at equilibrium are:

[NO] = 2 x (0.0033/100) x 1.00 M = 0.000066 M
[O2] = (0.0033/100) x 1.00 M = 0.000033 M

Substituting these values into the Kc equation gives:

Kc = (0.000066 M)^2 x (0.000033 M) / (0.9967 M)^2
Kc = 4.68 x 10^-8

Therefore, the equilibrium constant for the reaction 2NO2(g) → 2NO(g) + O2(g) at 1 atm and 25°C is 4.68 x 10^-8.
At 1 atm and 25°C, the initial concentration of NO2 is 1.00 M. Given that 0.0033% of NO2 is decomposed, we can first find the change in concentration of NO2:

Change in NO2 concentration = (0.0033/100) * 1.00 M = 0.000033 M

Now, for the balanced reaction 2NO2(g) ⇌ 2NO(g) + O2(g), the stoichiometry is as follows:

2 moles of NO2 decompose to form 2 moles of NO and 1 mole of O2.

Since 0.000033 M of NO2 decompose, the change in concentrations for the products are:

Δ[NO] = 0.000033 M
Δ[O2] = 0.000033 M / 2 = 0.0000165 M

Now, we can use these values to write the equilibrium expression:

Kc = [NO]^2 [O2] / [NO2]^2

At equilibrium:

[NO2] = 1.00 M - 0.000033 M = 0.999967 M
[NO] = 0.000033 M
[O2] = 0.0000165 M

Plug in these values into the equilibrium expression:

Kc = (0.000033)^2 * (0.0000165) / (0.999967)^2

Calculate the value:

Kc ≈ 1.09 × 10^-11

To know more about stoichiometry visit:-

https://brainly.com/question/30215297

#SPJ11


Related Questions

why is it important to do the calibration of the dropper quickly

Answers

The calibration of the dropper refers to the process of accurately measuring and adjusting the amount of liquid that can be dispensed from the dropper.

It is important to do this calibration quickly because any delay in the calibration process can result in inaccurate measurements and an improper dosage of the liquid being administered.



If the dropper is not properly calibrated, it can lead to either underdosing or overdosing, which can have serious consequences. Underdosing can result in ineffective treatment,

while overdosing can cause harm or toxicity to the patient. Additionally, inaccurate measurements can also lead to inconsistencies in the treatment, making it difficult to track progress and adjust the treatment plan accordingly.



By doing the calibration of the dropper quickly, healthcare professionals can ensure that the liquid being dispensed is accurately measured and administered to the patient.

This helps to avoid any potential harm or side effects that may result from inaccurate measurements, and also ensures that the patient receives the appropriate dosage required for effective treatment.

Therefore, it is crucial to prioritize the calibration of the dropper and complete it as quickly as possible to ensure the safety and well-being of the patient.

To know more about amount of liquid  refer here

https://brainly.com/question/24972177#

#SPJ11

write the formula for a complex formed between zn2 and oh− with a coordination number of 4.
Write the formula for a complex formed between Zn2 and OH

Answers

The formula for the complex formed between Zn2+ and OH− with a coordination number of 4 is [Zn(OH)4]2−.

When Zn2+ ions combine with four OH− ions, a complex ion is formed. The coordination number of this complex ion is 4, meaning that the Zn2+ ion is surrounded by four OH− ions in a tetrahedral arrangement. The formula for this complex ion is written by placing the Zn2+ ion in the center and surrounding it with four OH− ions. The charge on the complex ion must be balanced, so two negative charges are needed. This is accomplished by adding a 2− superscript to the formula.

In coordination chemistry, a complex ion is formed when a central metal ion or atom is surrounded by other ions or molecules, known as ligands. The coordination number is the number of ligands that are attached to the central metal ion. In the case of Zn2+ and OH−, when four OH− ions surround the Zn2+ ion, a coordination number of 4 is obtained.

To know more about coordination number visit:

https://brainly.com/question/16236454

#SPJ11

What will happen to the pH or pure water if 5.0 grams NaNO3 is added? (Hint: Split the compound apart into separate ions, determine if either is acidic, basic or neutral.) a) Increase b) Not enough information given c) Decrease d) Remains the same

Answers

When NaNO3 is added to pure water, it dissociates into its constituent ions, Na+ and NO3-. Na+ is a neutral ion and has no effect on the pH of the solution. However, NO3- is the conjugate base of a weak acid (HNO3), which means it can accept H+ ions and increase the pH of the solution.

Since there are no other acidic or basic substances present in the solution, we can conclude that the addition of NaNO3 will increase the pH of pure water. This is because the NO3- ion will react with water to form HNO3 and OH- ions. The OH- ions will then increase the pH of the solution, making it more basic. The extent of the pH increase will depend on the concentration of NaNO3 added. In general, the more NaNO3 added, the greater the increase in pH.
The answer to the question is a) Increase. The addition of NaNO3 will increase the pH of pure water due to the formation of OH- ions from the reaction between NO3- and water.

Learn more about conjugate base here ;

https://brainly.com/question/30225100

#SPJ11

for 5 points, determine the ksp of cd(oh)2. its solubility is 1.2 x 10-6.

Answers

The Ksp (solubility product constant) of Cd(OH)2 can be determined based on its solubility, which is given as 1.2 x [tex]10^{-6}[/tex]. The Ksp of Cd(OH)2 is approximately 1.44 x [tex]10^{-12}[/tex].

The solubility product constant (Ksp) is a measure of the extent to which a sparingly soluble compound dissolves in water. It is defined as the product of the concentrations of the ions raised to the power of their stoichiometric coefficients in the balanced chemical equation for dissolution.

The balanced equation for the dissolution of Cd(OH)2 is:

Cd(OH)2 ⇌ Cd2+ + 2OH-

The solubility of Cd(OH)2 is given as 1.2 x [tex]10^{-6}[/tex], which represents the concentration of Cd2+ ions and OH- ions in the saturated solution. Since the stoichiometric coefficient of Cd2+ is 1 and the stoichiometric coefficient of OH- is 2, the concentration of Cd2+ ions can be considered as 1.2 x [tex]10^{-6}[/tex] M.

The Ksp expression for Cd(OH)2 can be written as:

Ksp = [Cd2+][tex][OH-]^2[/tex]

Substituting the known value of [Cd2+] as 1.2 x [tex]10^{-6}[/tex] M, we can calculate the value of [OH-] by dividing the solubility by the stoichiometric coefficient, giving [OH-] = (1.2 x [tex]10^{-6}[/tex] M) / 2 = 6 x [tex]10^{-7}[/tex] M.

Plugging these values into the Ksp expression, we get:

Ksp = (1.2 x [tex]10^{-6}[/tex] M)(6 x [tex]10^{-7}[/tex] M)^2

Ksp ≈ 1.44 x [tex]10^{-12}[/tex]

Therefore, the Ksp of Cd(OH)2 is approximately 1.44 x [tex]10^{-12}[/tex].

To learn more about solubility product constant, refer:-

https://brainly.com/question/1419865

#SPJ11

which of the following molecules is not infrared active? a) n2 b) no c) co d) co2

Answers

The molecule that is not infrared active is (a) [tex]N_2[/tex].

Which molecule among N2, NO, CO is not infrared active?

Infrared spectroscopy is a powerful tool used to study molecular vibrations. Infrared-active molecules have a change in their dipole moment during vibration, resulting in absorption of infrared radiation. [tex]N_2[/tex], or nitrogen gas, consists of two nitrogen atoms bonded together by a triple bond, and it is a homonuclear diatomic molecule. It does not possess a permanent dipole moment and therefore does not undergo a change in dipole moment during vibration. As a result, [tex]N_2[/tex] is not infrared active.

Infrared spectroscopy is a technique that examines the interaction of infrared radiation with molecules, providing valuable information about their structure and chemical composition. By studying the absorption and emission of infrared light, scientists can identify functional groups, determine bond types, and analyze molecular vibrations. Infrared-active molecules exhibit distinct peaks in their infrared spectra, indicating specific vibrational modes. In contrast, molecules like [tex]N_2[/tex], which lack a permanent dipole moment, do not exhibit these characteristic peaks and are considered infrared inactive. Understanding the concept of infrared activity is essential for interpreting infrared spectra and gaining insights into the molecular properties of various substances.

Learn more about infrared active molecules

brainly.com/question/13644216

#SPJ11

3. Write balanced equations for the following reactions: a) HCOOH + MnO4 → CO2 + Mn2+ in acidic solution b) Clo, → ClO2 + Cl- in acidic solution 4. For the following reaction, determine E cell, AG, and K. (E°c2072-/C13+ = 1.23V; E° Fe3+/Fe2+ = 0.77V) Cr20,2- + Fe2+ → Cr3+ + Fe3+

Answers

The equilibrium constant for the given reaction is very large, indicating that the reaction proceeds essentially to completion in the forward direction.

a) Balanced equation for the reaction:

HCOOH + 2MnO4- + 3H+ → 2CO2 + 2Mn2+ + 4H2O

b) Balanced equation for the reaction:

ClO3- → ClO2 + Cl-

For the given reaction, the balanced equation is:

Cr2O72- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2O

To determine Ecell, we need to calculate the standard cell potential (E°cell) using the standard reduction potentials of the half-reactions involved:

E°cell = E°reduction (cathode) - E°reduction (anode)

First, we need to identify the half-reactions:

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O E°red = 1.33V

Fe3+ + e- → Fe2+ E°red = 0.77V

To use these values in the equation, we need to reverse the second half-reaction:

Fe2+ → Fe3+ + e- E°ox = -0.77V

Now we can substitute the values into the equation:

E°cell = E°reduction (cathode) - E°reduction (anode)

E°cell = 0.77V - (-1.33V)

E°cell = 2.10V

To determine AG, we can use the equation:

ΔG° = -nFE°cell

where n is the number of moles of electrons transferred in the balanced equation, and F is Faraday's constant (96,485 C/mol).

In this case, n = 6 (from the balanced equation), so:

ΔG° = -6 x 96,485 C/mol x 2.10V

ΔG° = -1.17 x 10^6 J/mol

Finally, we can use the equation:

K = e^(-ΔG°/RT)

where R is the gas constant (8.31 J/mol-K) and T is the temperature in Kelvin. Assuming room temperature (298 K), we get:

K = e^(-(-1.17 x 10^6 J/mol)/(8.31 J/mol-K x 298 K))

K = 1.2 x 10^26

For such more questions on equilibrium

https://brainly.com/question/19340344

#SPJ11

The balanced equations for the reactions are given below.

a)The balanced equation for the reaction between formic acid (HCOOH) and permanganate ion (MnO4-) in acidic solution is:

HCOOH + 2MnO4- + 3H+ → 2Mn2+ + CO2 + 4H2O

b) The balanced equation for the decomposition of hypochlorous acid (HClO) to chlorite ion (ClO2-) and chloride ion (Cl-) in acidic solution is:

3HClO → 2ClO2- + Cl- + 2H+

c) To determine the cell potential (Ecell) for the reaction between dichromate ion (Cr2O72-) and iron(II) ion (Fe2+), we need to first calculate the standard cell potential (E°cell) using the standard reduction potentials for the half-reactions involved:

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O E° = 1.33V

Fe3+ + e- → Fe2+ E° = 0.77V

The overall balanced equation for the reaction is:

Cr2O72- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2O

Using the Nernst equation:

Ecell = E°cell - (RT/nF)lnQ

where R is the gas constant (8.314 J/mol-K), T is the temperature in Kelvin (298 K), n is the number of electrons transferred (6 in this case), F is the Faraday constant (96,485 C/mol), and Q is the reaction quotient.

At standard conditions (1 M concentrations and 1 atm pressure), Q = 1 and lnQ = 0, so the equation simplifies to:

Ecell = E°cell = 1.33 - 0.77 = 0.56 V

To calculate the standard free energy change (ΔG°) and equilibrium constant (K) for the reaction, we use the equations:

ΔG° = -nF E°cell = -(6 mol)(96,485 C/mol)(0.56 V) = -328,879 J/mol = -328.9 kJ/mol

K = e^(-ΔG°/RT) = e^(-(-328.9 kJ/mol)/(8.314 J/mol-K)(298 K)) = 4.18 x 10^22

Learn more about balanced equations here :

https://brainly.com/question/31242898

#SPJ11

What is the equilibrium constant (Kp) at 45 °C for the reaction below, given the thermodynamic values: AG°f (O3(g)) = 163.4 kJ/mole and AG°f (O2(g) = 0 kJ/mole 203(g) 3 029) 131.9 O 1.93 x 1057 O 4.80 x 1053 O 1.07 x 10-57

Answers

To determine the equilibrium constant (Kp) at 45 °C for the given reaction, we need the standard Gibbs free energy change (ΔG°) for the reaction.

The ΔG° can be calculated using the standard Gibbs free energy of formation (ΔG°f) values for the reactants and products.

The balanced equation for the reaction is:

2 O3(g) ⟶ 3 O2(g)

Given thermodynamic values:
ΔG°f(O3(g)) = 163.4 kJ/mol
ΔG°f(O2(g)) = 0 kJ/mol

The ΔG° for the reaction can be calculated as follows:

ΔG° = (3 × ΔG°f(O2(g))) - (2 × ΔG°f(O3(g)))
    = (3 × 0 kJ/mol) - (2 × 163.4 kJ/mol)
    = -326.8 kJ/mol

Now, we can use the Van 't Hoff equation to relate the equilibrium constant (Kp) to the ΔG° and temperature (T):

ln(Kp) = -ΔG° / (R × T)

where:
R = Gas constant = 8.314 J/(mol·K)
T = Temperature in Kelvin (45 °C = 318.15 K)

Substituting the values into the equation:

ln(Kp) = -(-326.8 kJ/mol) / (8.314 J/(mol·K) × 318.15 K)
       = 326800 J/mol / (8.314 J/(mol·K) × 318.15 K)
       = 124.15

Taking the exponential of both sides to solve for Kp:

Kp = e^(ln(Kp))
   = e^(124.15)
   ≈ 1.35 × 10^53

Therefore, the equilibrium constant (Kp) at 45 °C for the given reaction is approximately 1.35 × 10^53.

To learn more about equilibrium :

https://brainly.com/question/30694482

#SPJ11

Describe the complete role of the acid catalyst in the rearrangement of pinacol. Select one: One acid molecule deprotonates a hydroxyl group and then another acid molecule deprotonates an oxygen after rearrangement The acid deprotonates a hydroxyl group and then the conjugate base protonates an oxygen after rearrangement. One acid molecule protonates a hydroxyl group and then another acid molecule protonates an oxygen after rearrangement. The acid protonates a hydroxyl group and then the conjugate base deprotonates an oxygen after rearrangement

Answers

The complete role of the acid catalyst in the rearrangement of pinacol involves the acid protonating a hydroxyl group and then the conjugate base deprotonating an oxygen after rearrangement.

The acid catalyst plays a crucial role in facilitating the rearrangement of pinacol, a reaction known as the pinacol rearrangement. In this rearrangement, a pinacol molecule undergoes a proton transfer and subsequent rearrangement to form a ketone.

Initially, the acid catalyst protonates one of the hydroxyl groups in pinacol, generating a carbocation intermediate. This protonation increases the electrophilic character of the carbon atom adjacent to the hydroxyl group, making it more susceptible to nucleophilic attack.

After the rearrangement step, where the carbocation undergoes a shift to form a more stable carbocation, the conjugate base of the acid catalyst deprotonates an oxygen atom. This deprotonation step helps restore the aromaticity of the system by eliminating the positive charge on the oxygen atom.

Overall, the acid catalyst in the pinacol rearrangement acts as a proton shuttle, facilitating the rearrangement by protonating a hydroxyl group initially and then allowing the conjugate base to deprotonate an oxygen atom after the rearrangement has occurred.

Learn more about ketone here: https://brainly.com/question/30459912

#SPJ11

Write the balanced chemical reaction for the following nitrogen cycle reactions. These reactions are mediated by bacteria and plants in nature and in wastewater treatment. (a) nitrification of ammonium to nitrite using molecular oxygen. (b) nitrification of nitrite to nitrate using molecular oxygen. (c) denitrification of nitrate to N2 using succinic acid as the carbon & energy source. (d) If a wastewater effluent has an ammonium concentration of 12 mg/L as N, what is the nitrogenous oxygen demand (how much O2 in mg/L would be required to oxidize the ammonium to nitrate by wastewater bacteria)?

Answers

(a) NH4+ + 2O2 → NO2- + 2H+ + H2O

(b) NO2- + ½O2 → NO3-

(c) 2NO3- + C4H6O4 → 2N2 + CO2 + 3H2O

(d) To oxidize 1 mg/L of ammonium to nitrate, 4.57 mg/L of dissolved oxygen is required. Therefore, to oxidize 12 mg/L of ammonium, the nitrogenous oxygen demand would be:

12 mg/L x 4.57 mg O2/mg NH4+ = 54.84 mg/L O2

To know more about ammonium to nitrate refer here

https://brainly.com/question/13915102#

#SPJ11

a 325 ml sample of gas is initially at a pressure of 721 torr and a temperature of 32c if this gas is compressed to a volume of 296 ml and the pressure increases to 901 torr, what will be the new temperature of the gas

Answers

The new temperature of the gas will be 61.9°C.

What is the new temperature of the gas?

To solve this problem, we can use the combined gas law, which relates the initial and final conditions of pressure, volume, and temperature.

The combined gas law equation is as follows:

(P₁V₁) / T₁ = (P₂V₂) / T₂

Given:

P₁ = 721 torr (initial pressure)

V₁ = 325 mL (initial volume)

T₁ = 32°C (initial temperature)

V₂ = 296 mL (final volume)

P₂ = 901 torr (final pressure)

T₂ = ? (final temperature)

Converting temperatures to Kelvin:

T₁ = 32 + 273.15 = 305.15 K

Now we can rearrange the combined gas law equation to solve for T₂:

T₂ = (P₂V₂ * T₁) / (P₁V₁)

Substituting the given values:

T₂ = (901 torr * 296 mL * 305.15 K) / (721 torr * 325 mL)

T₂ ≈ 61.9°C

Therefore, the new temperature of the gas will be approximately 61.9°C.

To know more about Kelvin, refer here:

https://brainly.com/question/30542272#

#SPJ4

procaine hydrochloride (mw = 272.77 g/mol) is used as a local anesthetic. calculate the molarity of a 3.548 m solution which has a density of 1.134 g/ml.

Answers

The molarity of the 3.548 m solution of procaine hydrochloride is 4.15 M. The molarity of the 3.548 m solution of procaine hydrochloride with a density of 1.134 g/ml can be calculated using the formula Molarity = (mass/volume) x (1/molecular weight).

First, we need to convert the density to mass/volume units, which is grams per liter (g/L). To do this, we multiply the given density by 1000 to get 1134 g/L.

Next, we can plug in the values we have into the formula:

Molarity = (1134 g/L) x (1/272.77 g/mol)

Molarity = 4.15 M

Therefore, the molarity of the 3.548 m solution of procaine hydrochloride is 4.15 M.

In explanation, molarity is a measure of the concentration of a solution, which is expressed in moles of solute per liter of solution. To calculate molarity, we need to know the mass of the solute in grams, the volume of the solution in liters, and the molecular weight of the solute in grams per mole. In this case, we were given the mass per volume (density) and the molecular weight, so we were able to convert the density to grams per liter and plug the values into the formula.

To learn more about Molarity refer to

https://brainly.com/question/2817451

#SPJ11

Rank the following complex ions in order of increasing wavelength of light absorbed.
[Co(H2O)6]3+, [CO(CN)6]3-, [CO(I)6]3-, [Co(en)3]3+

Answers

Complex ions in order of increasing wavelength of light absorbed:

[Co(H₂O)₆]³⁺ < [Co(en)₃]³⁺ < [CO(I)₆]³⁻ < [CO(CN)₆]³⁻

The wavelength of light absorbed by a complex ion is related to the energy required to promote an electron from a lower energy level (ground state) to a higher energy level (excited state).

The energy required is proportional to the frequency (and inversely proportional to the wavelength) of the absorbed light. Therefore, the order of increasing wavelength of light absorbed corresponds to the order of decreasing energy required to promote an electron to an excited state.

Based on the ligand field theory, the ligands affect the energy of the d orbitals of the central metal ion, which in turn affects the energy required to promote an electron to an excited state.

Strong field ligands (such as CN⁻) cause a greater splitting of the d orbitals, leading to higher energy transitions, while weak field ligands (such as H₂O) cause less splitting and lower energy transitions.

Using this information, we can rank the complex ions in order of increasing wavelength of light absorbed:

[Co(H₂O)₆]³⁺  < [Co(en)₃]³⁺ < [CO(I)6]3- < [CO(CN)6]3-

- [Co(H₂O)₆]³⁺ : This complex ion has a weak field ligand (H₂O), leading to a smaller splitting of the d orbitals and lower energy transitions. Therefore, it absorbs light at longer (lower) wavelengths, corresponding to lower energy.

- [Co(en)₃]³⁺: This complex ion has a stronger field ligand (en = ethylenediamine), leading to a larger splitting of the d orbitals and higher energy transitions than [Co(H₂O)₆]³⁺ . Therefore, it absorbs light at slightly shorter (higher) wavelengths than [Co(H₂O)₆]³⁺ .

- [CO(I)₆]³⁻: This complex ion has a larger and more extended ligand field compared to [Co(H₂O)₆]³⁺  and [Co(en)₃]³⁺ due to the larger size of the I⁻ ion. This causes an even larger splitting of the d orbitals and higher energy transitions, leading to absorption of light at even shorter (higher) wavelengths.

- [CO(CN)₆]³⁻: This complex ion has the strongest field ligand (CN⁻), causing the largest splitting of the d orbitals and the highest energy transitions. Therefore, it absorbs light at the shortest (highest) wavelengths, corresponding to the highest energy.

To learn more about Complex ions refer here:

https://brainly.com/question/31310283#

#SPJ11

enanimines and imines are tuatomers that contain n atoms. draw a stepwise mechanism for the acid-catalyzed conversion

Answers

The acid-catalyzed conversion of enamines to imines involves a stepwise mechanism that includes protonation, rearrangement, and deprotonation.

The terms enamines, imines, and tautomers are essential in understanding the acid-catalyzed conversion mechanism. Enaminines and imines are tautomers, which means they are isomers that can readily interconvert by the transfer of a hydrogen atom. In this case, they contain nitrogen (N) atoms.

For the acid-catalyzed conversion of enamines to imines, the stepwise mechanism is as follows:

1. Protonation: The enamine reacts with an acid (e.g. H₃O⁺), and the nitrogen atom (N) in the enamine becomes protonated, forming a positively charged intermediate.

2. Rearrangement: The positively charged intermediate undergoes a 1,2-hydride shift (a hydrogen atom with its two electrons is transferred to the neighboring carbon atom).

3. Deprotonation: The positively charged nitrogen atom in the iminium ion is deprotonated by a water molecule, leading to the formation of the imine and regeneration of the acid catalyst.

Learn more about tautomers at https://brainly.com/question/16857794

#SPJ11

Methanol is a high-octane fuel used in high-performance racing engines. Calculate ΔG° for the reaction: 2CH3OH(g) + 3O2(g) → 2CO2(g) + 4H2O(g)
look up thermodynamic values ?

Answers

The standard Gibbs free energy change for the reaction is -1291.5 kJ/mol. This negative value indicates that the reaction is thermodynamically favorable, meaning that it will proceed spontaneously in the forward direction under standard conditions. This suggests that methanol can be an effective high-octane fuel for high-performance racing engines.

To calculate the standard Gibbs free energy change (ΔG°) for the reaction 2CH3OH(g) + 3O2(g) → 2CO2(g) + 4H2O(g), we need to use thermodynamic values for the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°) for the reaction.

Using the values provided by a standard thermodynamic table, we find that ΔH° for the reaction is -1455.1 kJ/mol and ΔS° is -550.2 J/K·mol.

We can then use the equation ΔG° = ΔH° - TΔS°, where T is the temperature in Kelvin, to calculate the standard Gibbs free energy change for the reaction. Assuming a temperature of 298 K, we get:

ΔG° = (-1455.1 kJ/mol) - (298 K)(-550.2 J/K·mol)
ΔG° = -1455.1 kJ/mol + 163.6 kJ/mol
ΔG° = -1291.5 kJ/mol

Therefore, the standard Gibbs free energy change for the reaction is -1291.5 kJ/mol. This negative value indicates that the reaction is thermodynamically favorable, meaning that it will proceed spontaneously in the forward direction under standard conditions. This suggests that methanol can be an effective high-octane fuel for high-performance racing engines.

To know more about methanol click here:

https://brainly.com/question/3006705

#SPJ11

A solution of NaOH has a concentration of 25% by mass. What mass of NaOH is present in 0. 250 g of this solution? Use the periodic table in the toolbar if needed. G.

Answers

The mass of NaOH present in 0.250 g of a solution with a concentration of 25% by mass, we need to calculate the mass of NaOH in the solution.

A 25% by mass solution means that 25 g of NaOH is present in 100 g of the solution. First, we calculate the mass of the solution:

Mass of solution = 0.250 g

Next, we can set up a proportion to find the mass of NaOH in the solution:

(25 g NaOH) / (100 g solution) = x / (0.250 g solution)

Cross-multiplying and solving for x:

x = (25 g NaOH) * (0.250 g solution) / (100 g solution)

x = 0.0625 g NaOH

Therefore, the mass of NaOH present in 0.250 g of the solution is approximately 0.0625 g.

This calculation is based on the assumption that the density of the solution is 1 g/mL (which is usually the case for aqueous solutions). If the density of the solution is different, the mass calculation may vary.

Learn more about mass of NaOH here

https://brainly.com/question/15299296

#SPJ11

Wax is a saturated hydrocarbon, a covalent compound. Wax is not soluble in water yet sugar is also a covalent compound and is soluble in water. Look at the structure of both compounds and explain what could justify these results

Answers

The reason why these two compounds are soluble in water is due to the differences in their structural makeup.

Wax and sugar both are covalent compounds but have different solubility in water due to their structural differences. Wax is a hydrophobic molecule and does not dissolve in water because of its non-polar nature. This is due to the long nonpolar hydrocarbon chain present in wax. On the other hand, sugar is a hydrophilic molecule and is soluble in water due to its polar nature. Sugar is a polar molecule that contains many polar hydroxyl functional groups (-OH) that have the ability to form hydrogen bonds with water molecules and thus dissolve in water. So, in conclusion, the difference in the structure of these two compounds is the justification for their solubility in water.

Learn more about compounds here:

https://brainly.com/question/32300619

#SPJ11

(Eq. 7) of our synthesis involves both an Oxidation and a Reduction of Copper. Show this by appropriate assignment of Oxidation States. Is this a Disproportionation reaction? Explain. CuCl(aq) + Cu(s) + 4 Cl(aq) 2 CuCl(aq) (Eq.7)

Answers

In Eq. 7, the oxidation state of copper in CuCl(aq) is +2, while in Cu(s) it is 0. After the reaction, both copper atoms in CuCl(aq) have an oxidation state of 0, while the copper atom in Cu(s) has an oxidation state of +2. This indicates that there was a reduction of copper in CuCl(aq) and an oxidation of copper in Cu(s).

This reaction is not a disproportionation reaction because the same element (copper) is not being simultaneously oxidized and reduced. Rather, one copper species is being oxidized while another copper species is being reduced.
Hi! I'd be happy to help you with your question.

In equation 7, CuCl(aq) + Cu(s) + 4 Cl(aq) → 2 CuCl2(aq), we can analyze the oxidation and reduction of copper by determining the oxidation states of the elements involved.

Copper in CuCl has an oxidation state of +1. In the solid copper, Cu(s), the oxidation state is 0. In the product CuCl2, the oxidation state of copper is +2.

During the reaction, Cu in CuCl maintains its oxidation state of +1. However, Cu(s) is oxidized from an oxidation state of 0 to +2. Simultaneously, the Cu(II) from CuCl2 is reduced to Cu(I) in CuCl. Therefore, both oxidation and reduction of copper are present in this reaction.

This reaction is not a disproportionation reaction because a disproportionation reaction occurs when an element in a single species is both oxidized and reduced. In this case, the oxidation and reduction of copper occur in two different species, CuCl and Cu(s), rather than within a single species.

To know more about oxidation state visit:-

https://brainly.com/question/31688257

#SPJ11

convert the following sinusoids to phasors in polar form (a) –20 cos(4t 135°) (b) 8 sin(20t 30°) (c) 20 cos(2t) 15 sin(2t)

Answers



To convert sinusoids to phasors in polar form, we need to first identify the amplitude and phase angle of the signal. For a sinusoid of the form A*cos(ωt + φ), the amplitude is A and the phase angle is φ. Once we have these values, we can represent the signal as a complex number in polar form, given by A*exp(jφ), where j is the imaginary unit.

Using this method, we can convert the following sinusoids to phasors in polar form:

(a) -20*cos(4t + 135°)

Amplitude: 20
Phase angle: -45° (subtract 180° from 135°)

Phasor in polar form: 20*exp(-j45°)

(b) 8*sin(20t + 30°)

Amplitude: 8
Phase angle: 30°

Phasor in polar form: 8*exp(j30°)

(c) 20*cos(2t) + 15*sin(2t)

To convert this to a single sinusoid, we can use the identity sin(x + y) = sin(x)cos(y) + cos(x)sin(y) and write:

20*cos(2t) + 15*sin(2t) = sqrt(20^2 + 15^2)*cos(2t + θ)

where cos(θ) = 20/sqrt(20^2 + 15^2) and sin(θ) = 15/sqrt(20^2 + 15^2). Therefore:

Amplitude: sqrt(20^2 + 15^2) = 25
Phase angle: θ = tan^-1(15/20) = 36.87°

Phasor in polar form: 25*exp(j36.87°)

In (a), we have a negative amplitude and a phase angle of 135°. To convert this to polar form, we need to subtract 180° from the phase angle to get it in the range of -180° to 180°. This gives us a phase angle of -45° and a positive amplitude of 20.

In (b), we have a positive amplitude and a phase angle of 30°. We can represent this as a complex number in polar form by multiplying the amplitude by the exponential of the phase angle, which gives us a phasor of 8*exp(j30°).

In (c), we have a sum of two sinusoids. To convert this to a single sinusoid, we can use the identity sin(x + y) = sin(x)cos(y) + cos(x)sin(y). This allows us to rewrite the signal as a single cosine wave with an amplitude of 25 and a phase angle of 36.87°. We can then represent this as a phasor in polar form by multiplying the amplitude by the exponential of the phase angle, which gives us a phasor of 25*exp(j36.87°).

learn more about sinusoids

https://brainly.com/question/29529184

#SPJ11

The sinusoid -20cos(4t + 135°) can be expressed in polar form as a phasor of 20exp(-j45°), whereas the sinusoid 8sin(20t + 30°) can be represented as a phasor of 8exp(j30°).

How to solve

The value of (a) is represented by a phase angle of 135° and a negative amplitude. In order to transform this into polar form, it is necessary to deduct 180 degrees from the phase angle so it can be within the limit of -180 degrees to 180 degrees.

We can determine a negative phase angle of 45 degrees and a 20-unit magnitude in the positive direction.

The value of (b) shows a constructive magnitude and a 30° angle of phase. A phasor of 8 multiplied by the exponential of the phase angle can be utilized to express this as a complex number in polar form, resulting in 8*exp(j30°).

In condition (c), we are presented with the addition of two sinusoidal waves. We can transform this into a solitary sinusoidal wave by applying the formula sin(x + y) = sin(x)cos(y) + cos(x)sin(y).

We can cleverly rework the signal to be expressed as a solitary cosine wave, possessing an amplitude of 25 and a phase angle measuring 36. 87°

Similarly, the combination of 20cos(2t) + 15sin(2t) can be represented by a single phasor of 25*exp(j36. 87°)

Read more about sinusoids here:

https://brainly.com/question/13170815

#SPJ4

Obtain a copy of the Plan an Investigation Student Guide for this lab. Your teacher may provide a copy, or you can select the link to access it. Be sure to read the entire Student Guide for this lab. It is important that you also follow all safety guidelines. If you need to review them, refer to the Lab Safety Agreement. Use the drop-down menus to answer the questions. Did you read through the Plan an Investigation Student Guide for this lab? Did you review the Lab Safety Agreement, if necessary? Now, follow the Student Guide and plan your investigation, with your teacher's guidance. Did you complete the investigation?

Answers

it is recommended that you obtain a copy of the Plan an Investigation Student Guide for the lab in question.

This can be provided by your teacher or accessed through a link that may be provided. Once you have obtained the guide, it is important that you read through the entire Student Guide for this lab. This will help you understand the instructions, procedures, and expectations for the investigation you will be conducting. Additionally, be sure to follow all safety guidelines. You can refer to the Lab Safety Agreement if you need to review them. Next, follow the Student Guide and plan your investigation with your teacher's guidance. This may involve developing a hypothesis, identifying variables, designing an experiment, collecting data, analyzing results, and drawing conclusions .Finally, once you have completed the investigation, you should be prepared to present your findings to your teacher or class. This may involve creating a report, poster, or presentation that summarizes your research and conclusions.

Learn more about lab here:

https://brainly.com/question/29296260

#SPJ11

Suppose one mixes 40.0 mL of a 0.25 M solution with 85.0 mL of a 0.12 M solution. Assuming volumes are additive, what is the molarity of the final solution?O a. 0.16 MO b. 0.016 MO c 0.37 MO d. 0.11 MO e cannot be determined; one must know the molar mass

Answers

The molarity of the final solution is (a) 0.16 M.

The first step in solving this problem is to calculate the total number of moles of solute present in each solution. To do this, we multiply the volume of each solution by its respective molarity.
For the 0.25 M solution, we have:
(40.0 mL) x (0.25 mol/L) = 10.0 mmol
For the 0.12 M solution, we have:
(85.0 mL) x (0.12 mol/L) = 10.2 mmol
Next, we add the two amounts of moles together to get the total number of moles in the final solution:
10.0 mmol + 10.2 mmol = 20.2 mmol
Finally, we divide the total number of moles by the total volume of the solution (which is the sum of the volumes of the two solutions) to get the molarity of the final solution:
(40.0 mL + 85.0 mL) = 125.0 mL = 0.125 L
Molarity = (20.2 mmol) / (0.125 L) = 0.16 M
Therefore, the answer is (a) 0.16 M.
Note that we did not need to know the molar mass of the solute to solve this problem.

To know more about molarity visit: https://brainly.com/question/8732513

#SPJ11

Consider the following reaction at constant P. Use the information here to determine the value of ΔSsurr at 298 K. Predict whether or not this reaction will be spontaneous at this temperature.
N2(g) + 2 O2(g) → 2 NO2(g) ΔH = +66.4 kJ
A) ΔSsurr = +223 J/K, reaction is spontaneous
B) ΔSsurr = -66.4 J/K, reaction is spontaneous
C) ΔSsurr = +66.4 kJ/K, reaction is not spontaneous
D) ΔSsurr = -223 J/K, reaction is not spontaneous

Answers

Answer:

D

Explanation:

The value of ΔSsurr at 298 K can be calculated using the following equation:

ΔSsurr = -ΔHsys / T

where:

ΔHsys = enthalpy change of the system (kJ)

T = temperature (K)

We are given that ΔHsys = +66.4 kJ and T = 298 K. Substituting these values, we get:

ΔSsurr = -(66.4 kJ) / (298 K) = -222.8 J/K ≈ -223 J/K

Therefore, the value of ΔSsurr at 298 K is approximately -223 J/K.

The spontaneity of the reaction can be determined using the Gibbs free energy change (ΔG) at constant pressure:

ΔG = ΔH - TΔS

where:

ΔH = enthalpy change of the system (kJ)

T = temperature (K)

ΔS = entropy change of the system (J/K)

We can calculate ΔS using the standard molar entropies of the reactants and products:

ΔS = 2S°(NO2) - S°(N2) - 2S°(O2)

ΔS = 2(239.9 J/K mol) - 191.6 J/K mol - 2(205.0 J/K mol)

ΔS = -176.8 J/K mol

Substituting the given values, we get:

ΔG = (66.4 kJ) - (298 K)(-176.8 J/K mol) = +19.9 kJ/mol

Since ΔG is positive, the reaction is not spontaneous at 298 K.

Therefore, the correct answer is (D) ΔSsurr = -223 J/K, reaction is not spontaneous.

Considering the reaction (N2(g) + 2 O2(g) → 2 NO2(g) ΔH = +66.4 kJ) at constant P, the value of ΔSsurr at 298 K is D) ΔSsurr = -223 J/K, reaction is not spontaneous.

To determine the spontaneity of the reaction and the value of ΔSsurr at 298 K, we can use the following steps:
Step 1: Calculate ΔSsurr using the equation: ΔSsurr = -ΔH/T, where ΔH is the change in enthalpy and T is the temperature in Kelvin.
ΔSsurr = -(+66.4 kJ) / 298 K
ΔSsurr = -66,400 J / 298 K
ΔSsurr = -223 J/K
So, the value of ΔSsurr is -223 J/K, which corresponds to option D.
Step 2: Check the spontaneity of the reaction using the equation: ΔG = ΔH - TΔS, where ΔG is the change in Gibbs free energy. If ΔG is negative, the reaction is spontaneous; if ΔG is positive, the reaction is non-spontaneous.
First, we need to find ΔS for the reaction. Since this information is not provided, we cannot determine ΔG and thus the spontaneity of the reaction. However, we can use the calculated value of ΔSsurr to predict the spontaneity of the reaction.
Since ΔSsurr is negative, the surrounding entropy is decreasing. This means that the reaction is more likely to be non-spontaneous at this temperature.
Therefore, the answer is:
D) ΔSsurr = -223 J/K, reaction is not spontaneous.

To learn more about enthalpy, refer:-

https://brainly.com/question/16720480

#SPJ11

provide an acceptable name of the compound below. spell out the full name of the compound.

Answers

The compound is called 2,4-dimethylpentane.

What is the full name of the compound?

2,4-dimethylpentane is a hydrocarbon compound consisting of five carbon atoms arranged in a linear chain with two methyl groups attached to the second and fourth carbon atoms. The prefix "2,4-dimethyl" indicates the positions of the methyl groups, while "pentane" signifies the presence of a five-carbon chain. This compound belongs to the alkane family, which is characterized by single bonds between carbon atoms and saturated hydrocarbon structures.

2,4-dimethylpentane is an organic compound commonly used as a solvent in various industries, including pharmaceuticals, paints, and coatings. Its unique molecular structure and chemical properties make it an effective choice for dissolving nonpolar substances. It is a clear liquid with a strong hydrocarbon odor and is highly flammable.

Learn more about Compound

brainly.com/question/14117795

#SPJ11

provide a reasonable mechanistic explanation for the formation of small amounts of 3,3,4,4-tetramethylhexane during the free-radical bromination of 2-methylbutane

Answers

The formation of small amounts of 3,3,4,4-tetramethylhexane can be explained by the formation of a resonance-stabilized bromine radical intermediate and subsequent rearrangement reactions.

During the free-radical bromination of 2-methylbutane, small amounts of 3,3,4,4-tetramethylhexane are formed due to the formation of a resonance-stabilized bromine radical intermediate. When bromine reacts with 2-methylbutane, it forms a bromine radical that attacks one of the methyl groups on the 2-methylbutane molecule, forming a primary radical. This primary radical then reacts with another molecule of bromine to form a secondary radical.
The secondary radical can then undergo a rearrangement reaction, where it forms a tertiary radical. This tertiary radical can then react with another molecule of bromine to form the final product, 3,3,4,4-tetramethylhexane.
The formation of the resonance-stabilized bromine radical intermediate allows for the formation of the tertiary radical, which then leads to the formation of the final product. Although the formation of 3,3,4,4-tetramethylhexane is only a minor product, it demonstrates the complexity of the free-radical bromination reaction and the variety of products that can be formed.

To know more about 2-methylbutane visit:

brainly.com/question/20709119

#SPJ11

Which solution would contain the highest concentration of ions? a. 1.0 M CaCO3 b.1.0 M Na2SO4 O c. 1.0 M KCI d. 1.2 M NaCl e. 0.75 M LiBr

Answers

The solution that would contain the highest concentration of ions is the one that dissociates the most in water. option b, 1.0 M Na2SO4, will contain the highest concentration of ions as it produces a total of 3 ions when dissolved in water.

In this case, we need to consider the number of ions each compound will produce when dissolved in water.

a. 1.0 M [tex]CaCo_{3}[/tex] will dissociate into [tex]Ca_{2+}[/tex] and [tex]CO_{32-}[/tex] ions.

b. 1.0 M [tex]Na_{2}SO_{4}[/tex] will dissociate into 2 Na+ and [tex]SO_{42-}[/tex]ions.

c. 1.0 M KCI will dissociate into K+ and Cl- ions.

d. 1.2 M NaCl will dissociate into Na+ and Cl- ions.

e. 0.75 M LiBr will dissociate into Li+ and Br- ions.

Comparing the number of ions produced, option b, 1.0 M [tex]Na_{2}SO_{4}[/tex], will contain the highest concentration of ions as it produces a total of 3 ions when dissolved in water. The other options will only produce 2 ions or less.

To know more about ions, refer here:

https://brainly.com/question/13692734#

#SPJ11

(b) identify the color of a compound that absorbs blue-green light?

Answers

The color of a compound that absorbs blue-green light is likely to appear orange

When a compound absorbs light of a specific color, it typically reflects or transmits the complementary color. Complementary colors are opposite each other on the color wheel. Blue-green light has a wavelength of around 480-520 nanometers (nm). When this light is absorbed by a compound, the complementary color is the one reflected or transmitted, the complementary color of blue-green light is a mix of red and yellow, which is generally perceived as orange.

The compound absorbs the blue-green portion of the light spectrum and reflects or transmits the orange light, which is what we perceive as the color of the compound. This principle is applicable in various fields such as chemistry, physics, and art, where understanding the interactions of colors and light is essential for predicting the appearance of substances or materials. Therefore, the color of a compound that absorbs blue-green light is likely to appear orange.

Learn more about complementary color at

https://brainly.com/question/30784226

#SPJ11

determine the oxidation number of elements indicated in each of the following compounds: c in h2co3 n in n2 zn in zn(oh)42- n in no2- li in lih fe in fe3o4

Answers

The oxidation numbers are: [tex]C^4^+ N^-^3 Zn^2^+ N^3^+ Li^+ Fe^2^+ and Fe^3^+[/tex]

What are the oxidation numbers of the elements?

In H₂CO₃, the oxidation number of C is +4 because oxygen has an oxidation number of -2 and hydrogen has an oxidation number of +1.

In N₂, the oxidation number of N is 0 since it is a diatomic molecule.

In Zn(OH)₄²⁻, the oxidation number of Zn is +2 since the overall charge of the complex ion is -2.

In NO₂⁻, the oxidation number of N is +3 because oxygen has an oxidation number of -2 and the overall charge of the ion is -1.

In LiH, the oxidation number of Li is +1 since hydrogen has an oxidation number of -1.

In Fe₃O₄, the oxidation number of Fe is both +2 and +3. In this compound, two of the iron atoms have an oxidation number of +2, and one of the iron atoms has an oxidation number of +3.

Learn more about Oxidation numbers

brainly.com/question/29100691

#SPJ11

Using only the periodic table arrange the following elements in order of increasing ionization energy:
bismuth, polonium, radon, astatine
Lowest
1
2
3
4
highest

Answers

Using only the periodic table, we can arrange the given elements in order of increasing ionization energy as follows :-  Bi < Po < At < Rn.

The ionization energy of an element is the energy required to remove an electron from a neutral atom in the gas phase. As we move across a period from left to right, the ionization energy generally increases due to the increasing nuclear charge and decreasing atomic radius.

Similarly, as we move down a group, the ionization energy generally decreases due to the increasing distance between the outermost electrons and the nucleus.

1. Bismuth (Bi): The outermost electron of Bi is in the 6p orbital, and the atomic radius is relatively large. Thus, Bi has the lowest ionization energy among the given elements.

2. Polonium (Po): The outermost electron of Po is in the 6p orbital, but the atomic radius is smaller than Bi due to the smaller atomic size. Thus, Po has a slightly higher ionization energy than Bi.

3. Astatine (At): The outermost electron of At is in the 6p orbital, but the atomic radius is smaller than Po due to the increasing nuclear charge. Thus, At has a higher ionization energy than Po.

4. Radon (Rn): The outermost electron of Rn is in the 6p orbital, and the atomic radius is smaller than At due to the smaller atomic size. Thus, Rn has the highest ionization energy among the given elements.

To know more about ionization refer here :-

https://brainly.com/question/1602374#

#SPJ11

buffer contains 0.290 m of weak acid hy and 0.200 m y−. what is the ph change after 0.0015 mol of ba(oh)2 is added to 0.300 l of this solution?

Answers

The ph change after 0.0015 mol of ba(oh)2 is added to 0.300 l of this solution is 0.1 units.

To solve this problem, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

We can calculate the new concentrations of hy and y- after the addition of 0.0015 mol of [tex]Ba(OH)_2[/tex]. Finally, we can use the Henderson-Hasselbalch equation to calculate the new pH of the solution.

After the addition of[tex]Ba(OH)_2[/tex], the concentration of y- will increase, and the concentration of hy will decrease. The new concentrations are:

[tex][hy] = 0.290 - (0.0015/0.300) = 0.285 M\ and\ [y-] = 0.200 + (0.0015/0.300) = 0.205 M.[/tex]

Plugging these values into the Henderson-Hasselbalch equation, we get a new pH of approximately 7.4. Therefore, the pH change is 0.1 units.

To know more about Henderson-Hasselbalch equation, here

brainly.com/question/13423434

#SPJ4

what is the ph of a 0.758 m lin3 solution at 25c

Answers

As to why this information cannot be provided is because LiN3 is not a strong acid or base, and therefore does not undergo complete dissociation in water to produce H+ or OH- ions. This makes it difficult to determine the pH of the solution using traditional acid-base calculations.

To determine the pH of a solution containing a weak acid or base, one would need to use a more specialized approach, such as the Henderson-Hasselbalch equation or the use of indicators. Without further information or context, it is not possible to determine the pH of a 0.758 M LiN3 solution is the pH of a 0.758 M LiNO3 solution at 25°C is as follows .

LiNO3 is a salt formed from a strong base (LiOH) and a strong acid (HNO3). When this salt is dissolved in water, it dissociates into its respective ions (Li+ and NO3-). Since both the cation (Li+) and the anion (NO3-) come from strong acids and bases, they do not hydrolyze or react with water, meaning they don't affect the H+ or OH- concentrations in the solution.

To know more about ions visit :

https://brainly.com/question/14982375

#SPJ11

A gas sample at STP contains 1.15 g oxygen and 1.55 g nitrogen. What is the volume of the gas sample? (a) 1.26 L (b) 2.04 L (c) 4.08 L (d) 61.0 L

Answers

To solve this problem, we can use the ideal gas law: PV = nRT. However, since the gas is at STP (Standard Temperature and Pressure), we can use the simplified equation: V = nRT/P, where P is the pressure at STP (1 atm) and T is the temperature at STP (273.15 K).

First, we need to find the number of moles of each gas in the sample. We can use the molar mass of each gas to convert the given masses to moles:

moles of oxygen = 1.15 g / 32.00 g/mol = 0.0359 mol
moles of nitrogen = 1.55 g / 28.01 g/mol = 0.0553 mol

Next, we can calculate the total number of moles in the sample:

total moles = moles of oxygen + moles of nitrogen
total moles = 0.0359 mol + 0.0553 mol
total moles = 0.0912 mol

Now we can plug in the values into the simplified equation for volume:

V = nRT/P
V = (0.0912 mol)(0.0821 L·atm/mol·K)(273.15 K)/(1 atm)
V = 2.04 L

Therefore, the volume of the gas sample is 2.04 L. The answer is (b).

learn more

about STP

https://brainly.in/question/4028492?referrer=searchResults

#SPJ11

Other Questions
reverberation time of a room can be increased by covering the walls with better reflectors of sound. group of answer choices true false quizlet Check each of the following sentences that describe a behavior and an explanation of the ultimate - not proximate -- cause of the behavior. Check All That Apply A rabbit runs away because it smells a predator A mother goat begins lactation because her nervous system detects suckling of her offspring A lizard defends its territory because that increases its odds of reproduction An octopus mimics a dance of another species that is venomous because that increases its chances of survival A tiger growis because it sees another tiger approaching Help! I don't understand this question (please explain with a diagram)A stone (A) is dropped from rest from a height h above the ground. A second stone (B) is simultaneously thrown vertically up from a point on the ground with velocity "v". The line of motion of both the stones are the same. The value of v which would enable stone B to meet stone A midway (at midpoint) between their initial positions is: (correct answer - option 3) 1. 2gh2. 2(gh)3. (gh)4. (2gh) sketch the region bounded by the curves y=2x2 and y=2x1/3 then use the shell method to find the volume of the solid generated by revolving this region about the y-axis. plot the point whose polar coordinates are given. then find the cartesian coordinates of the point. (a) 6, 4 3 (x, y) = (b) 4, 3 4 (x, y) = (c) 5, 3 (x, y) = which culture made jade figures that show the transformation of a human into a jaguar? systems of stratification are characterized by different hierarchical structures and varying degrees of mobility. all of the following are systems of stratification except: all the following are accurate descriptions of modern marketing today except which one In ______ normal form, each non-primary key attribute is identified by the whole key (what we call full functional dependency) consider the given parametric equations ttx33 = and23 3tty= . a. determine the points on the curve where the curve is horizontal. The mass of the Sikorsky UH-60 helicopter is 9300 kg. It takes off vertically at t = 0. The pilot advances the throttle so that the upward thrust of its engine (in kN) is given as a function of time in seconds by T=100+t2.A.) How fast is the helicopter rising 3 s after it takes off?B.) How high has it risen 3 s after it takes off? TRUE OR FALSE pearson's r is the technical term for the correlation coefficient most often used in psychological research A drum of 80mm radius is attached to the disk of 160-mm radius. The disk have a combined mass of 5 kg and combined radius of gyration of 120-mm. A cord pulls P pulls with a force of 20N. The static and kinetic friction are 0.25 and 0.20 respectively. determine wether or not the disk lips and angular acceleration of disk and acceleration of G. Under which circumstances should you use a two-population z test?The standard deviation is unknownThe sample size is less than 30The population is slightly skewed and n> 40The standard deviation is known and n> 30 a measure of the manager's ability to control expenses and increase revenues to improve profitability is: Suppose a is a set for which |a| = 100. how many subsets of a have 5 elements? how many subsets have 10 elements? how many have 99 elements? Referring to the negative-edge triggered D flip-flop designed with NOR gates as depicted in Slide 3 of Module 65 Let I represent a negative-edge and represent a positive-edge. Fill in the following table: Time CLKPQ TQ tillo 0 0 0 The cost of this negative-edge triggered D flip-flop = gates - inputs = Edge-Triggered D Flip-Flop (Section 7.4.2) P3 Move the inverterbubbles to the other end of the wire(s). This may require duplicating the bubble for wires tied together (e.g., NAND gate 2). Use De Morgan's Theorem to convert the AND gates to NOR gates. Clock 12 CLK !Clock = negative-edge triggered !D !Q same as D +0 A chronic skin disease in which cells in the epidermis divide seven times more frequently than normal, resulting in the formation of bright red patches covered with silvery scales, is called soccer fields vary in size. a large soccer field is 100 meters long and 80 meters wide. what are its dimensions in feet? (assume that 1 meter equals 3.281 feet. for each answer, enter a number.) QUESTION 29! find the perimeter, if points A, B, and C are points of tangency and JA=9, AL=14, and LK=26