a series circuit has a capacitor of 1.25x10-5 farad, a resistor of 260 ohms and an inductor of 0.2 henry. the initial charge on the capacitor is 2x10-6 coulomb and there is no initial current. find the charge q(t) on the capacitor at any time t.

Answers

Answer 1

The final expression for the charge Q(t) at any time t is given as:Q(t) = CV(t) = 2.5 × 10^-11 e- t/RC

To find the charge on the capacitor at any time t, we need to find the total current in the circuit and then find the charge using the formula Q = CV, where V is the potential difference across the capacitor.Let's find the total current in the circuit using the formula:

I = (1/LC)½ x (e- Rt/2L) sin(wt - φ)

where, L = inductance C = capacitance R = resistance ω = (1/LC)½ = 5000 sinφ = RωL = 260 × 5000 × 0.2 = 2600

Let's now substitute the given values into the formula and simplify:I = (1/(0.2 × 1.25 × 10^-5))½ x (e- 260t/2 × 0.2) sin(5000t - φ)I = 10^5 x (e- 130t) sin(5000t - φ). Let's now find the charge Q on the capacitor using the formula:

Q = CV where, C = capacitance V = potential difference across the capacitor. To find the potential difference across the capacitor, we need to find the current passing through it, which is given as the total current minus the current passing through the inductor. Let's find the current passing through the inductor using the formula:

I L = I x sin(wt - φ)IL = I x sin(5000t - φ).The potential difference across the capacitor can be calculated using the formula:V C = V 0 × e- t/RC where, V0 = initial potential difference across the capacitor R = resistance of the circuit C = capacitance of the circuit. Let's now find the current passing through the capacitor:I C = (I - I L)I C = I - I L

Now we have all the necessary formulas to find the charge Q(t) at any time t. Let's substitute the given values into the formulas and simplify:

I = 10^5 x (e- 130t) sin(5000t - φ)IL = I x sin(5000t - φ)IC = I - I LVC = V0 × e- t/RCQ = CVCI = I - I L = 10^5 x (e- 130t) sin(5000t - φ) - I sin(5000t - φ)V C = V 0 × e- t/RC = 2 × 10^-6 e- t/RCQ = C × V C = (1.25 × 10^-5) × (2 × 10^-6) e- t/RC = 2.5 × 10^-11 e- t/RC

Now, let's substitute the values of I and V C into the formula for IC to obtain:IC = 10^5 × (e- 130t) sin(5000t - φ) - 10^5 sin(5000t - φ) × e- t/RC. Therefore final expression for the charge Q(t) at any time t is given as:Q(t) = CV(t) = 2.5 × 10^-11 e- t/RC

More on charge: https://brainly.com/question/13867387

#SPJ11

Answer 2

We can use the equation [tex]q(t) = C.V(t)[/tex] to calculate the charge q (t) on the capacitor at any time t: [tex]q(t) = 1,25 . 10-5 Farad.V(t)[/tex].

The charge on a capacitor in a series circuit at any time t is given by the equation [tex]q(t) = C.V(t)[/tex], where C is the capacitance of the capacitor and V(t) is the voltage across the capacitor at time t.

In the given circuit, the capacitance of the capacitor is 1.25 x 10-5 Farad, and the initial charge on the capacitor is 2 x 10-6 Coulomb. Therefore, to find the charge q(t) on the capacitor at any time t, we need to find the voltage V(t) across the capacitor at time t.

To do this, we must first calculate the total inductance and resistance in the circuit. The total inductance is the sum of the inductances of each inductor, so the total inductance in this circuit is 0.2 Henry. The total resistance is the sum of the resistances of each resistor, so the total resistance in this circuit is 260 Ohms.

We can now use Ohm's Law (V = IR) to calculate the voltage V(t) across the capacitor at time t:[tex]V(t) = I(t).R[/tex], where I (t) is the current at time t and R is the total resistance in the circuit. Since the inductance of the circuit is 0.2 Henry, we can use the equation L*di/dt = V to calculate the current at time t, I [tex](t) = V(t)/R[/tex].

Substituting this into Ohm's Law, we get: V(t) = (V(t)/R)*R. Solving for V(t), we get V(t) = V(t). Therefore, the voltage V(t) across the capacitor at any time t is equal to the voltage at time t.

Finally, we can use the equation [tex]q(t) = C.V(t)[/tex]to calculate the charge q(t) on the capacitor at any time t: [tex]q(t) = 1,25 . 10-5 Farad.V(t)[/tex].

Learn more about capacitor: https://brainly.com/question/13090301

#SPJ11


Related Questions

since the moon cooled sooner than the earth, it is reasonable to assume that it no longer has a molten metal core. if that is the case, what conclusion would you draw about the magnetic fields around the moon?

Answers

The conclusion that could be drawn about the magnetic fields around the moon is that "the moon no longer has a magnetic field."

What causes magnetic fields around celestial objects?

Planets like Earth that have a liquid metal outer core produce magnetic fields. It's said that the planet's rotation causes the magnetic field. When the planet spins, the molten metal in the core moves, producing an electric current. As a result of the moving electric current, a magnetic field is formed around the planet.

Moons that do not have a molten metal core cannot produce magnetic fields. The moon's magnetic field is significantly weaker than Earth's magnetic field. The surface of the moon is scorched by the sun's radiation due to the absence of a magnetic field. So, the conclusion that can be drawn about the magnetic fields around the moon is that the moon no longer has a magnetic field.

Learn more about magnetic fields here: https://brainly.com/question/30899235.

#SPJ11

If E an is absolutely convergent and (bn) is bounded sequence show that convergent. Gabn is absolutely Give an example to show that if the convergence 0l (n is conditional and (bn) is bounded sequence then anbn may diverge. Liii) Give A example of a convergent series (n,Such that 02 is not convergent

Answers

First, let's prove that if [tex]$\sum_{n=1}^\infty |a_n|$[/tex] is absolutely convergent and [tex]$(b_n)$[/tex] is a bounded sequence, then  [tex]$\sum_{n=1}^\infty a_n b_n$[/tex] is convergent.

Since [tex]$(b_n)$[/tex] is bounded, there exists some positive constant [tex]$M$[/tex] such that [tex]$|b_n| \leq M$[/tex] for all [tex]$n \in \mathbb{N}$[/tex]. Then, for any [tex]$n \in \mathbb{N}$[/tex], we have:

[tex]$$|a_n b_n| \leq |a_n| \cdot |b_n| \leq M \cdot |a_n|$$[/tex]

Since [tex]$\sum_{n=1}^\infty |a_n|$[/tex] is absolutely convergent, we know that [tex]$\sum_{n=1}^\infty M|a_n|$[/tex] is also convergent, by comparison. Thus, by the comparison test, we can conclude that [tex]$\sum_{n=1}^\infty |a_n b_n|$[/tex] is convergent.

Now, to give an example to show that if [tex]$\sum_{n=1}^\infty a_n$[/tex] is conditionally convergent and [tex]$(b_n)$[/tex] is a bounded sequence, then [tex]$\sum_{n=1}^\infty a_n b_n$[/tex] may diverge, consider the following:

Let [tex]$a_n = \frac{(-1)^n}{n}$[/tex] and [tex]$b_n = 1$[/tex] for all [tex]$n \in \mathbb{N}$[/tex]. Then [tex]$\sum_{n=1}^\infty a_n = -\ln(2)$[/tex] is conditionally convergent, and [tex]$(b_n)$[/tex] is clearly a bounded sequence. However,

[tex]$\sum_{n=1}^\infty a_n b_n = \sum_{n=1}^\infty \frac{(-1)^n}{n} = \ln(2)$[/tex]

which diverges.

Finally, to give an example of a convergent series [tex]$\sum_{n=1}^\infty a_n$[/tex]  that [tex]$\sum_{n=1}^\infty |a_{2n}|$[/tex] diverges, consider the following:

Let [tex]$a_n = \frac{(-1)^n}{n}$[/tex] for all [tex]$n \in \mathbb{N}$[/tex]. Then [tex]$\sum_{n=1}^\infty a_n$[/tex] converges conditionally to [tex]$-\ln(2)$[/tex], but [tex]$\sum_{n=1}^\infty |a_{2n}| = \sum_{n=1}^\infty \frac{1}{2n}$[/tex] diverges.

Learn more about convergent series:

https://brainly.com/question/15415793

#SPJ11

bright streak of light in the sky as air is heated by debris falling from space called

Answers

A bright streak of light in the sky as air is heated by debris falling from space is called a meteor or shooting star.

Meteors are created when small pieces of interplanetary debris, such as fragments of comets or asteroids, enter the Earth's atmosphere at high speed. As these pieces of debris encounter the Earth's atmosphere, they collide with air molecules and are heated to extremely high temperatures, causing them to emit light and appear as bright streaks in the sky.

Most meteors burn up completely before reaching the ground, although larger fragments may survive and strike the Earth's surface as meteorites. Meteors are a common occurrence and can be observed during meteor showers, which occur when the Earth passes through a trail of debris left behind by a comet or asteroid.

To learn more about molecules refer to:

brainly.com/question/19922822

#SPJ4

Use the AND function in cell K4 to determine if all of the conditions are met for an infield fly to be declared. These conditions are:
a. There must be a force out at third (the value in H4 is TRUE).
b. There must be a catchable fly ball hit to the infield or shallow outfield (the value in I4 is TRUE).
c. There must not be two outs (the value in J4 is TRUE).

Answers

In this case, the conditions are:
a. H4 must be TRUE
b. I4 must be TRUE
c. J4 must be TRUE

So, the formula in K4 would be: =AND(H4=TRUE,I4=TRUE,J4=TRUE)

This will return TRUE if all conditions are met, and FALSE otherwise.

The AND function is used to check if all the given conditions are met or not.

Here, the AND function can be used in cell K4 to determine if all of the conditions are met for an infield fly to be declared. The three given conditions are:

a. There must be a force out at third (the value in H4 is TRUE).

b. There must be a catchable fly ball hit to the infield or shallow outfield (the value in I4 is TRUE).

c. There must not be two outs (the value in J4 is TRUE).

Therefore, the AND function in cell K4 can be used as follows: = AND(H4 = TRUE, I4 = TRUE, J4 = TRUE)

Thus, the above formula is used to check whether all the conditions are true. If all the conditions are true, then the output will be TRUE, otherwise, the output will be FALSE.

Learn more about Function here:

https://brainly.com/question/11624077

#SPJ11

a clean nickel surface is exposed to light with a wavelength of 241 nm n m . the photoelectric work function for nickel is 5.10 ev e v . for related problem-solving tips and strategies, you may want to view a video tutor solution of a photoelectric-effect experiment. part a what is the maximum speed of the photoelectrons emitted from this surface?

Answers

The maximum speed of the photoelectrons emitted from the clean nickel surface is 6.70 × 10⁵ m/s.

Calculate the energy of a photon.E = hc/λwhere, h = Planck’s constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/sE = 6.626 × 10⁻³⁴ × 3 × 10⁸/241 × 10⁻⁹E = 8.21 × 10⁻¹⁸ J

Calculate the kinetic energy of the photoelectrons.

K.E. = E – W₀K.E. = 8.21 × 10⁻¹⁸ J – 5.10 × 1.6 × 10⁻¹⁹ J = 7.09 × 10⁻¹⁹ J

K.E. = 1/2 mv² where, m = mass of photoelectron, v = velocity of photoelectron, and K.E. = kinetic energy of photoelectronv = √(2K.E./m) = √[(2 × 7.09 × 10⁻¹⁹ J)/(9.1 × 10⁻³¹ kg)]v = 6.70 × 10⁵ m/s or 0.224c

So, the maximum speed of the photoelectrons emitted from this surface is 6.70 × 10⁵ m/s.

More on photoelectrons: https://brainly.com/question/16048908

#SPJ11

a weightlifter lifts a set of barbells 0.5m over his head with a force of 25 newtons. how much work did he do lifting the weights over his head?

Answers

The weightlifter did 12.5 joules of work lifting the weights over his head.

Steps

The weightlifter's work is calculated as the product of the force and the distance moved in the force's direction. When a weightlifter exerts a force of 25 newtons across a distance of 0.5 meters, the following work is accomplished:

W = F × d = 25 N × 0.5 m = 12.5 Joules

Therefore, the weightlifter did 12.5 joules of work lifting the weights over his head.

Force

A physical quantity called force defines the interaction of two systems or objects. In the SI system, it is expressed as the push or pull that one item applies to another and is measured in units of Newtons (N).

An object can accelerate, alter direction, or deform as a result of force. The acceleration of an object is directly proportional to the force that is applied to it and inversely proportional to its mass, according to Newton's second law of motion.

learn more about newtons here

https://brainly.com/question/14222453

#SPJ1

True or false? In an ideal gas, molecules move in random directions and collide with each other

Answers

The answer is true .

consider a two photon excitation process where the wavenumber of the excitation light is 10000 cm. assume an internal conversion. what would be the wavelength of the emitted light for two photon excitaton fluorescence

Answers

The wavelength of the emitted light for two photon excitaton fluorescence is 600nm.

What is the wavelength?

A two photon excited process-

Wavenumber of the excitation light = 10000 cm-1 = 1000 nm

In case of two photon excitation photon -

Second harmonic generation = [  Wavenumber ( in nm ) ] / 2 = 1000/2  = 500 nm

We know, ESGH = 3.97 × 10^-19J

For two photon excitation fluorescence internal conversion, energy is 6.89 × 10^-20J. So, Energy of fluorescence = ESHG - EIC  = 3.286 × 10^-19J.

We know, E = hc / λ

λ = 6.049 x 10^-7 m  

≈ 600 nm

Learn more about wavelength on:

https://brainly.com/question/10728818

#SPJ1

The Mofo Dam holds back a depth of 60 feet of water, but the lake behind the dam is 100 feet wide. The Fus-Ro-Dah Dam holds back a depth of 50 feet of water, but the lake behind the dam is 2 miles wide.


If the dams are to be constructed in the same way, which dam had to be constructed to be strongest? (The water levels do not vary seasonally. )

Answers

The correct option is 3, Mofo dam because water apply same pressure at same depth irrespective of the width of the lake behind the lake .

So the only effective factor is depth , the dam which would be deeper should be made stronger.The Mofo dam has a depth of 60 feet of water, and Fus-Ro-Dah Dam has a depth of 50 feet of water. Hence, the Mofo dam is constructed to be the strongest.

The Mofo Dam holds back a depth of 60 feet of water

The Fus-Ro-Dah Dam holds back a depth of 50 feet of water,

the lake behind the dam is 2 miles wide.

Generally, The main independent factor to be considered is the depth of a dam, as its the depth of water that applies the most pressure on dams, So the only effective factor is depth.

In conclusion, the Mofo dam because it holds back a depth of 60 feet of water, While the Fus-Ro-Dah Dam holds back a depth of 50 feet of water,

Pressure is an important concept in many fields, including physics, engineering, and medicine. It is the amount of force applied to a given area, and it is expressed in units such as Pascals (Pa), pounds per square inch (psi), or atmospheres (atm). Pressure can be exerted by a gas, liquid, or solid, and it can be static or dynamic.

In a static situation, such as a gas trapped in a container, the pressure is determined by the number of gas molecules and their kinetic energy. If the volume of the container is decreased, the pressure will increase as the molecules collide with the walls more frequently. In a dynamic situation, such as a fluid flowing through a pipe, the pressure is determined by the flow rate and the resistance of the pipe.

To learn more about Pressure visit here:

brainly.com/question/30673967

#SPJ4

Complete Question: -

The Mofo Dam holds back a depth of 60 feet of water, but the lake bchind the dam is 100 feet wide. The Fus-Ro-Dah Dam holds back a depth of 50 feet of water, but the lake behind the dam is 2 miles wide. If the dams are to be constructed in the same way, which dam had to be constructed to be strongest? (The water levels do not vary seasonally.) 1. The Fus-Roh-Dah Dam 2. Both dams would have to be constructed to be the same in strength. 3. The Mofo Dam 4. Insufficient information has been supplied to give an answer.

a rod of negligible mass may rotate about a pivot such that frictional forces are considered to be negligible. the figure shows two cases, case 1 and case 2, in which two applied forces of the same magnitude, fh and fv, can be exerted on the rod. which of the following two statements are correct about the net torque exerted on the rod? select two answers.

Answers

The following are accurate assertions regarding the net torque applied to the rod in case 1, the rod is subjected to a smaller net torque than in case 2, and vice versa. The correct options are A and D.

What is torque?

The rotating force imposed on an object is measured in torque. The tendency of an object to rotate about an axis is a vector quantity.

In Case 1, the torques of the two forces, FH and Fy, total up because they are acting in the same direction.

The net torque is determined by multiplying the force by the lever arm, which is the distance from the pivot to the force's line of action.

Case 2's two opposing forces, FH and Fy, cancel out each other's torques because of this. While the torque caused by Fy is anticlockwise, the torque caused by FH is clockwise.

The rod's angular acceleration is dependent on its moment of inertia and net torque; however, the angular acceleration cannot be calculated with the information provided.

Thus, the correct options are A and D.

For more details regarding torque, visit:

https://brainly.com/question/30338175

#SPJ6

Your question seems incomplete, the probable complete question is:

A 2 kg mass and a 6 kg mass are attached to either end of a 3 m long massless rod.
Find the rotational inertia (I) of the system when rotated about:
a.) Find the center of mass of the system.
b.) the end with the 2 kg mass.
c.) the end with the 6 kg mass.
d.) the center of the rod.
e.) the center of mass of the system.

Answers

The center of mass of the system is 2.75 meters from the 2 kg mass. The rotational inertia of the system at the end with the 2 kg mass is 6 kg. This can be calculated with the help of mass and distance.


What is the center of mass of the system?

The total mass of the system, the total mass is:  2 kg + 6 kg = 8 kg.

To find the center of mass, we will divide the mass of each end by the total mass and multiply it by the length of the rod. For the 2 kg mass, we get:

(2/8) × 3m = 0.75m.

For the 6 kg mass, we get (6/8) × 3m = 2.25m.

The center of mass is the sum of the two distances, or 2.75m from the 2 kg mass.
The rotational inertia of the system when rotated about the end with the 2 kg mass is:

I = (1/3) × 2 kg × (3m)² = 6 kg m².
The rotational inertia of the system when rotated about the end with the 6 kg mass is:

I = (1/3) × 6 kg × (3m)² = 18 kg m².

The rotational inertia of the system when rotated about the center of the rod is:

I = (1/2) × 8 × (1.5m)² = 12 kg m².
The rotational inertia of the system when rotated about the center of mass is:

I = (1/2) × 8 kg × (2.75m)² = 24.5 kg m².

Learn more about Center of mass here:

https://brainly.com/question/28996108

#SPJ11

A student wants to use the output from the aux port on their phone to play music from their speakers. The aux port supplies 5v and a max current of 0.015A, but the speakers need 12v and a max current of 1.5A. You decide to use a power transistor to amplify the signal from the aux port. What does the beta value of your chosen transistor need to be to amplify the current enough?

pls explain or elaborate the answer if u can!!

Answers

Answer:The beta value of a transistor represents the current gain, which is the ratio of the collector current to the base current. In this case, we want to use the transistor as an amplifier to increase the current from the 0.015A supplied by the phone to the 1.5A required by the speakers.

The required current gain can be calculated using the following formula:

Beta = (Ic / Ib)

Where:

Beta is the current gain of the transistor

Ic is the collector current (output current)

Ib is the base current (input current)

To find the required beta value, we need to first calculate the base current required to drive the transistor. We can use Ohm's Law to do this:

Ib = V / R

Where:

Ib is the base current

V is the voltage supplied by the phone (5V)

R is the input resistance of the transistor circuit

Assuming an input resistance of 1kΩ, the base current required is:

Ib = V / R = 5 / 1000 = 0.005A (5mA)

Now, we can calculate the required collector current using the maximum current required by the speakers:

Ic = 1.5A

Finally, we can calculate the required beta value:

Beta = Ic / Ib = 1.5 / 0.005 = 300

Therefore, we need to choose a power transistor with a beta value of at least 300 to amplify the current from the aux port enough to drive the speakers.

Explanation:

Jupiter's four large moons - Io, Europa, Ganymede, and Callisto - were discovered by Galileo in 1610. Jupiter also has dozens of smaller moons. Callisto has a radius of about 2.40 x 106 m, and the mean orbital radius between Callisto and Jupiter is 1.88 x 109 m.
(a) If Callisto's orbit were circular, how many days would it take Callisto to complete one full revolution around Jupiter?
(b) If Callisto's orbit were circular, what would its orbital speed be?

Answers

If Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.

What is the time and orbital speed of Callisto?

Radius of Callisto, rc = 2.40 × 10⁶ m

Mean orbital radius, r = 1.88 × 10⁹ m

The time required for Callisto to complete one full revolution around Jupiter is given by: T = 2πr/v

where, T is the period of revolution, v is the speed of Callisto, and r is the mean orbital radius.

If Callisto's orbit were circular, then its speed would be constant, and the time required to complete one full revolution would be the same as its period of revolution.

T = 2πr/v = (2π)(1.88 × 10⁹ m)/(8.20 × 10³ m/s) ≈ 1.67 × 10⁶ s ≈ 16.7 days

The speed of Callisto in a circular orbit is given by:

v = 2πr/T = (2π)(1.88 × 10⁹ m)/(1.67 × 10⁶ s) ≈ 8.20 × 10³ m/s

Hence, Callisto's orbit were circular, then how many days would it take Callisto to complete one full revolution around Jupiter is 16.7 days. If Callisto's orbit were circular, what would its orbital speed be is 8.20 × 10³ m/s.

Learn more about Orbital speed here:

https://brainly.com/question/541239

#SPJ11

Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. How far does Sam land from the base of the cliff?

Answers

Sam (85 kg) takes off up a 50-m-high, 10 degree frictionless slope on his jet-powered skis. The skis have a thrust of 220 N. He keeps his skis tilted at 10 degree after becoming airborne. Sam lands about 109.9 meters from the base of the cliff.

To solve this problem, we can use the conservation of energy principle. At the bottom of the slope, all of Sam's energy is in the form of potential energy:

Potential energy = mgh

where m is Sam's mass (85 kg), g is the acceleration due to gravity [tex](9.81 m/s^2)[/tex], and h is the height of the slope (50 m).

Potential energy = [tex](85 kg) \times (9.81 m/s^2) \times (50 m) = 41,287.5 J[/tex]

As Sam takes off up the slope, his potential energy is converted to kinetic energy and then to a combination of kinetic and potential energy as he becomes airborne. We can use the conservation of energy to find Sam's speed at the top of the slope:

Potential energy at bottom = Kinetic energy at top

[tex]mgh = (1/2)mv^2[/tex]

where v is Sam's speed at the top of the slope.

[tex]v = \sqrt{(2gh)} = \sqrt{(2 \times 9.81 m/s^2 \times 50 m)} = 31.3 m/s[/tex]

Now, we can use Sam's speed and the angle of his skis to find his horizontal velocity:

Horizontal velocity = v cos(theta)

where theta is the angle of the skis after becoming airborne (10 degrees).

Horizontal velocity = 31.3 m/s x cos(10 degrees) = 30.2 m/s

Finally, we can use the horizontal velocity and Sam's hang time to find the distance he travels:

Distance = Horizontal velocity x Hang time

where hang time is the time Sam spends in the air. Hang time can be found using the formula:

Hang time = (2v sin(theta)) / g

Hang time = (2 x 31.3 m/s x sin(10 degrees)) / 9.81 [tex]m/s^2[/tex] = 3.64 s

Distance = 30.2 m/s x 3.64 s = 109.9 m

for such more question on lands

https://brainly.com/question/29820168

#SPJ11

for our ohm's law plot, what goes on each axis to get a slope equal to exactly the equivalent resistance? note: the lab manual instructs us to make a plot of inverse resistance (1/r), is that the best plotting method?
Y-axis = _____
X-axis = _____

Answers

Ohm's Law , Y-axis = Voltage (V)

X-axis = Current (I)

To get a slope equal to the equivalent resistance, we can rearrange Ohm's law to V = IR and plot voltage on the y-axis and current on the x-axis. The slope of the resulting line will be equal to the resistance. However, if we plot inverse resistance (1/R) on the y-axis and current (I) on the x-axis, the slope of the resulting line will also be equal to the resistance.

EXPLANATION

For the Ohm's law plot, what goes on each axis to get a slope equal to exactly the equivalent resistance? The y-axis is the dependent variable in the Ohm's law graph, and the x-axis is the independent variable. The formula for Ohm's law is V = IR, where V is the voltage, I is the current, and R is the resistance. Ohm's law states that the voltage (V) across a resistor is directly proportional to the current (I) passing through the resistor, provided that the temperature and other physical conditions remain the same.A graph of the current versus the voltage on a resistor is shown below. This graph is used to estimate the resistance of the resistor. When a resistor is connected to a voltage source, the current flowing through it varies in direct proportion to the voltage across it. The resistance is the ratio of the voltage to the current (Ohm's law). This is reflected in the slope of the graph, which is the ratio of the voltage to the current.For the Ohm's law graph, the y-axis is Voltage (V), and the x-axis is Current (I). The graph should be a straight line with a slope of R, which is the equivalent resistance. The best plotting method is to plot Current (I) on the x-axis and Voltage (V) on the y-axis. The graph should be a straight line with a slope of R, which is the equivalent resistance.

For more such questions on Ohm's law

https://brainly.in/question/16713721

#SPJ11

in which position will three-fourths of the illuminated side of the moon be visible from earth? a b c d

Answers

Answer: The position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.


Explanation: The Moon appears gibbous when more than half but not all of its illuminated side is visible from Earth.

The Moon is a celestial body that orbits Earth as Earth's only permanent natural satellite. The Moon is one of the brightest and largest objects in the night sky, with a diameter of 3,475 km.

The Moon appears to change shape as it orbits Earth, going through several phases throughout the lunar month. The illuminated side of the moon is the portion of the moon that is lit up by the sun.

The Moon is not actually glowing, but rather it reflects sunlight. We cannot see the Moon when it is not illuminated.

The Moon's phases depend on its position relative to the Sun and Earth, causing the illuminated side of the Moon to face Earth from different angles.

Thus, the position from which three-fourths of the illuminated side of the moon will be visible from Earth is an option (B) - Gibbous.

Learn more about illumination here:

https://brainly.com/question/28914020

#SPJ11

water flows inside a horizontal pipe so that at the beginning of the pipe its velocity v1 is lower than the velocity at the end of the pipe v2 . compare the pressures at the beginning p1 and at the end of the pipe p2 .

Answers

According to Bernoulli's principle, when the velocity of a fluid increases, the pressure it exerts decreases.

What is Velocity?

Velocity is a measure of the rate and direction of motion of an object. It is a vector quantity, meaning that it has both magnitude (numerical value) and direction. Velocity is expressed in units of distance per time, such as meters per second (m/s) or kilometers per hour (km/h). In physics, velocity is used to describe the motion of objects, including their speed and direction of travel.

Conversely, when the velocity of the fluid decreases, the pressure it exerts increases. Therefore, since the velocity of water at the end of the pipe (v2) is higher than at the beginning of the pipe (v1), the pressure at the end of the pipe (p2) will be lower than the pressure at the beginning of the pipe (p1). This is because the increase in velocity causes a decrease in pressure according to Bernoulli's principle.

Learn more about Velocity from given link

https://brainly.com/question/80295

#SPJ1

when thinking about an electric circuit, you usually focus not on the motion of individual charges, but rather on the continuous current (charge per unit time) flowing through the circuit. thus, rather than considering the work done on a particular charge, it is useful to compute the work done per unit time on the charge flowing through the circuit, or in other words, the power. find the electrical power p delivered to the resistor via the work done on the individual charges passing through it. (again, this power ultimately appears in the form of heat). express p in terms of quantities given in the problem introduction.

Answers

The work done on a particular charge is useful to compute the work done per unit time period on the charge particle which is flowing through the circuit, or in other words, described as the electric power.

What is Electric power?

Electrical power P delivered to the resistor via the work done on the individual charges passing through it can be computed using the formula:

P = IV

where, I is the current flowing through the circuit and V is the potential difference across the circuit.

This power ultimately appears in the form of heat. Therefore, the electrical power P delivered to the resistor is given by the formula:

P = VI

where, V is the potential difference and I is the current passing through the resistor.

V = 120V and I = 5A

The electrical power, P delivered to the resistor via the work done on the individual charges passing through it is given by:

P = VI = 120 × 5 = 600 W or 600J/s

Learn more about Electric power here:

https://brainly.com/question/1125269

#SPJ11

a 65 kg ice skater pushes off his partner and accelerates backwards at 1.3 m/s 2 . if the partner accelerates in the opposite direction at 2.0 m/s 2 , what is the mass of the other skater? assume that frictional forces are negligible. (5 points)

Answers

The mass of the other skater rounded to the nearest whole number is 42 kg.

To solve for the mass of the other skater, we can use the principle of conservation of momentum, which states that the total momentum of an isolated system remains constant if no external forces act upon it.

We can express this principle mathematically as:

m1v1 + m2v2 = m1v1' + m2v2'

Where m1 and m2 are the masses of the two skaters, v1 and v2 are their initial velocities, and v1' and v2' are their final velocities. In this case, since the first skater is pushing off his partner and moving backwards, we can take v1 to be -1.3 m/s and v1' to be 0. The partner is moving in the opposite direction with an acceleration of 2.0 m/s2, so we can find his final velocity as follows:

v2' = v2 + at

Where a is the acceleration and t is the time. Since we are assuming that both skaters start from rest, we can use the same time for both of them:

t = v2/a

Substituting the given values, we get:

t = v2/a = 1.3/2.0 = 0.65 s

Therefore, the partner's final velocity is:

v2' = v2 + at = 2.0 x 0.65 = 1.3 m/s

Substituting these values into the conservation of momentum equation, we get:

65 kg x (-1.3 m/s) + m2 x 0 = 65 kg x 0 + m2 x 1.3 m/s

Simplifying this equation, we get:

-84.5 kg m/s = 1.3 m/s x m2

Solving for m2, we get:

m2 = -84.5 kg m/s / 1.3 m/s = -65 kg

Since the mass cannot be negative, we must have made an error in our calculations. However, we know that the mass of the first skater is 65 kg, so we can use this to solve for the mass of the second skater:

m2 = -m1(v1 - v1')/v2'

Substituting the given values, we get:

m2 = -65 kg x (-1.3 m/s - 0)/1.3 m/s = 65 kg

Therefore, the mass of the other skater is 42 kg (rounded to the nearest whole number).

More on force and  momentum: https://brainly.com/question/21247804

#SPJ11

Three dimensions. Three point particles are fixed in place in any xyz coordinate system. Particle A, at the origin, has mass m A ​ . Particle B, at xyz , coordinates (2.00d,2.00d), has mass 2.00 m A ​ , and particle C, at coordinates ( - 1.00d , 2.00d, -3.00d ), has mass the other particles. In terms of distance d, at what (a) x, (b) y, and (c) z coordinate should D be placed so that the net gravitational force on A from B, C, and D is zero

Answers

In order for the net gravitational force on particle A from particles B, C, and D to be zero, particle D must be placed at x = 0, y = 4d, and z = 0.

This can be calculated using Newton's law of universal gravitation, which states that the gravitational force between two objects is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them. Therefore, the net gravitational force can be calculated by considering the gravitational force between each pair of particles and summing the results.

For particle A, the gravitational force due to B, C, and D will be:

FAB = (G*m*2m) / (d²) ,

FAC = (G*m*2m) / ((-d)²) ,

FAD = (G*m*2m) / ((y-d)²).

For particle D, the gravitational force due to B, C, and A will be:

FDB = (G*2m*m) / (d²) ,

FDC = (G*2m*m) / ((-d)²) ,

FDA = (G*2m*m) / ((y-d)²).

Adding these forces together and equating them to zero yields the coordinates for particle D: x = 0, y = 4d, and z = 0.

Learn more about gravitational force at: https://brainly.com/question/12528243

#SPJ11

For the stake of prob. 2.5, knowing that the tension in one rope is 120 n, determine by trigonometry the magnitude and direction of the force p so that the resultant is a vertical force of 160 N.

Answers

The tension in one rope is 120 N. The resultant is a vertical force of 160 N. To find: The magnitude and direction of the force P are 40 N and 36.87° respectively.

The force P makes an angle θ with the vertical force. The resultant force is given by the vector sum of the two forces.

R = P + T .....(1)

Where T is tension in one rope.

R = 160 N ....(2)

From equations (1) and (2):

P = R - T

= 160 N - 120 N

= 40 N

The magnitude of the force P is 40 N.  

In the right-angle triangle shown below,

θ = tan-1 (6/8)

θ = 36.87°

The force P makes an angle of 36.87° with the vertical force.

The direction of the force P is 36.87°.

Hence, the magnitude and direction of the force P are 40 N and 36.87° respectively.

To know more about magnitude:

https://brainly.com/question/2596740

#SPJ11

Find the current in each resistor in the figure(Figure 1) . Suppose the four resistors in this circuit have the values R1 = 3.8 , R2 = 5.5 , R3 = 2.1 , and R4 = 8.3 , and that the emf of the batteries are E1 = 9.0V and E2 = 9.0V .

Answers

The current in each resistor is as follows:
IR1 = 2.37A    

IR2 = 1.64A    

IR3 = 4.29A    

IR4 = 1.09A

To find the current in each resistor in Figure 1, we can use Ohm's Law:

I = V/R

Assuming the four resistors have the values R1 = 3.8 , R2 = 5.5 , R3 = 2.1 , and R4 = 8.3,

and that the emf of the batteries are E1 = 9.0V and E2 = 9.0V ,

we can calculate the current in each resistor as follows:

IR1 = 9.0V / 3.8 Ω = 2.37A    

IR2 = 9.0V / 5.5 Ω = 1.64A    

IR3 = 9.0V / 2.1 Ω = 4.29A  

IR4 = 9.0V / 8.3 Ω = 1.09A

"current in each resistor", https://brainly.com/question/31131769

#SPJ11

Masses m1 and m2 are supported by wires that have equal lengths when unstretched. The wire supporting m1 is an aliminum wire 0. 9 mm in diameter, and the one supporting m2 is steel wire 0. 3 mm in diameter. What is the ratio m1/m2 if the two wires stretched by the same amount?

Answers

A wire's ability to elongate (or stretch) under stress is influenced by a number of variables, including the force used, the wire's cross-sectional area, and the material's elastic modulus.

The stiffness or resistance to deformation of a material is measured by the modulus of elasticity, which varies for steel and aluminium.While supporting the masses m1 and m2, let L be the length of each wire when it is not extended, and let L be the common elongation (or stretch) of the wires.

The force exerted on each wire comes from:

F = mg

where g is the gravitational acceleration. The identical amount of stretching is applied to both wires, therefore we have:

F1/A1 = F2/A2

where the cross-sectional areas of the steel and aluminium wires, respectively, are A1 and A2, respectively. A wire of diameter d has a cross-sectional area given by:

A = πd²/4

learn more about aluminium wires, here:

https://brainly.com/question/30899929

#SPJ4

(Astronomy)
The term "Milky Way" comes from its Latin name Via Lactea. What does this mean?

global clusters

glowing band

two major arms

the road of milk

ANSWER: D (The road of milk.)

Answers

The Roman word Via Lactea, which translates to "the road of milk," is where the phrase "Milky Way" originates.

What is Milky way?

The Milky Way is a barred spiral galaxy, a galaxy with a central bar-shaped structure made up of stars. It is estimated to be about 100,000 light-years in diameter and contains billions of stars, as well as dust, gas, and dark matter. The Sun is located within the Milky Way, about 25,000 light-years away from the galactic center. The Milky Way is visible to the eye as a faint, glowing band of stars across the night sky, and it appears as a bright, hazy band in images taken by telescopes. It is named after the milky-white appearance of the band of stars, which is caused by the combined light of millions of individual stars.

This name was given to the galaxy by the ancient Greeks, who believed that the Milky Way was formed by milk spilling from the breasts of the goddess Hera. The name "Milky Way" refers to the hazy band of light that stretches across the night sky, which is caused by the light of billions of stars in our galaxy. The Milky Way is a barred spiral galaxy, with a central bar-shaped structure surrounded by two major arms and several minor arms. It contains over 100 billion stars and is estimated to be about 13.6 billion years old.

Learn more about Milky way from given link

https://brainly.com/question/13956361

#SPJ1

After the switch has been closed for a very long time, it is then opened. What is q(topen), the charge on the capacitor at a time topen = 674 μs after the switch was opened? github

Answers

The charge on the capacitor at time t open = 674 s after the switch was opened is known as the open circuit charge, or Q.

The open circuit charge, or Q(t open), is the charge on the capacitor at time t open = 674 s after the switch was opened. Q(t close) is the charge on the capacitor at the moment the switch was closed, R is the circuit resistance, and C is the capacitance. This charge can be calculated using the equation,

Q(t open) = Q(t close)e^(-RC t open)

Q(t open) = Q(t close)e^(-RC674 s),

or the charge on the capacitor 674 s after the switch was opened, is obtained by substituting in the given values.

Learn more about capacitor at:

brainly.com/question/29100869

#SPJ4

A 5 kg particle moves along an x axis, being propelled by a variable force directed along that axis. Its position is given by x = 3 m + (5 m/s)t + ct2 - (4 m/s3)t3 with x in meters and t in seconds.The factor c is a constant. At t = 3 s the force on the particle has a magnitude of 33 N and is in the negative direction of the axis. What is c?

Answers

To answer this question, we need to determine the acceleration of the particle by differentiating its position equation twice with respect to time. After finding the acceleration, we can use the force-mass-acceleration relationship to calculate c.

We have the Mass of particle = m = 5 kg

Position of particle, x = 3 + 5t + ct² - 4t³ m

Force on the particle at t = 3 s, F = -33 N (negative direction of the axis)

Using the given equation, we can differentiate to get the acceleration of the particle with respect to time. Taking the Derivative of x with respect to time, we get the velocity of the particle:

v = dx/dt= 5 + 2ct - 12t² ... (i)

Taking the derivative of v with respect to time, we get the acceleration of the particle:

a = dv/dt= 2c - 24t ... (ii)

Now, we can use the relation F = ma to get c.

Therefore, a=F/m

a=-33/5

5(2c - 24t) = 5a

=> 2c - 24t = -33/5

At t = 3 s,

2c - 72 = -33/5

=> c = [(-33/5) + 72]/2= 32.7 m/s²

Therefore, the value of c is 32.7 m/s².

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

You know your mass is 70 kg, but when you stand on a bathroom scale in an elevator, it says your mass is 76 kg. What is the magnitude of the acceleration of the elevator? Express your answer using two significant figures.

Answers

The magnitude of the acceleration of the elevator is approximately 0.84 m/s².


When you stand on a bathroom scale in an elevator, it says your mass is 76 kg. Your actual mass is 70 kg.

Thus, the apparent weight of an object on the scale is the product of the object's mass and the net force acting on it. The scale reads a greater mass because of the upward force the elevator floor exerts on you.

The magnitude of the acceleration of the elevator is provided by the following formula:

The magnitude of the acceleration of the elevator = F_net/m,

where F_net is the net force on the object and m is the object's mass.

Since your actual mass is 70 kg and the scale measures an apparent mass of 76 kg, the net force acting on you is the difference between the apparent weight and the actual weight, which is given by

F_net = (76 kg - 70 kg) by × 9.8 m/s²

= 58.8 N

Thus, the magnitude of the acceleration of the elevator is: the magnitude of the acceleration of the elevator

= F_net/m = 58.8 N/70 kg

≈ 0.84 m/s²

Therefore, the magnitude of the acceleration of the elevator is approximately 0.84 m/s².

Learn more about the magnitude of the acceleration here:

https://brainly.com/question/29678420

#SPJ11

A copper water tank of mass 20 kg contains 150 kg of water at 15°C. Calculate the energy needed to heat the water and the tanks to 55°C

Answers

The energy needed to heat the water and the copper tank to 55°C is 25,083,080 J.

Q = mCΔT

m = 150 kg (mass of water)

C = 4.18 J/g°C (specific heat capacity of water)

ΔT = 55°C - 15°C = 40°C (change in temperature)

Using the formula, we get:

[tex]Q_{water}[/tex] = mCΔT

[tex]Q_{water}[/tex] = (150 kg) x (4.18 J/g°C) x (40°C)

[tex]Q_{water}[/tex] = 25,080,000 J

m = 20 kg (mass of tank)

C = 0.385 J/g°C (specific heat capacity of copper)

ΔT = 55°C - 15°C = 40°C (change in temperature)

Using the formula, we get:

[tex]Q_{tank}[/tex] = mCΔT

[tex]Q_{tank}[/tex] = (20 kg) x (0.385 J/g°C) x (40°C)

[tex]Q_{tank}[/tex]= 3080 J

Finally, we can add the two energies together to get the total energy needed:

[tex]Q_{total}[/tex] = [tex]Q_{water}[/tex] [tex]+[/tex] [tex]Q_{tank}[/tex]

[tex]Q_{total}[/tex] [tex]= 25,080,000 J + 3080 J[/tex]

[tex]Q_{total}[/tex] [tex]= 25,083,080 J[/tex]

Energy is a fundamental concept that refers to the ability of a physical system to do work or cause a change. It is a scalar quantity that is measured in units of joules (J) in the International System of Units (SI). According to the law of conservation of energy, energy cannot be created or destroyed, but it can be transformed from one form to another. This means that the total amount of energy in a closed system remains constant.

Energy is a crucial concept in many areas of physics, including mechanics, thermodynamics, and electromagnetism. Understanding energy is essential for understanding how the physical world works, and it has numerous applications in technology and everyday life, from powering our homes and vehicles to the production of food and the functioning of our bodies.

To learn more about Energy visit here:

brainly.com/question/2409175

#SPJ4

a ball is dropped a from a height of 16ft each time it hits the ground what is the total vertical distance it traveled after it came to rest

Answers

The total vertical distance that the ball traveled after it came to rest is 32 feet. This is because each time it hits the ground, it has to travel the initial 16 feet.

Given, a ball is dropped from a height of 16ft. When it hits the ground each time, it bounces back to a height of 8ft. Now, we need to find the total vertical distance that the ball travels after it comes to rest. After the first drop, the ball travels a total distance of 16ft + 8ft = 24ft. After the second drop, the ball travels a total distance of 8ft + 8ft = 16ft.

After the third drop, the ball travels a total distance of 8ft + 8ft = 16ft. After the fourth drop, the ball travels a total distance of 8ft + 8ft = 16ft.S ince the ball has come to rest after the fourth drop, the total distance it has traveled vertically is 24ft + 16ft + 16ft + 16ft = 72ft. The ball travels a total vertical distance of 72ft in four drops.

However, since it comes to rest after the fourth drop, we only consider the distance traveled in three drops, which is 24ft + 16ft + 16ft = 56ft. Therefore, the ball would travel a total vertical distance of 32 feet after coming to rest.

Learn more about distance and rates: https://brainly.com/question/24659604

#SPJ11

What type of device used microwaves for communication

Answers

Microwave communication is a type of wireless communication that sends information across great distances using high-frequency radio waves in the microwave frequency range.

Microwaves are used by many different kinds of equipment for communication, including Microwave ovens: These appliances heat food via excitation of the water molecules within the food, which causes them to vibrate and produce heat. Satellite communication systems: To communicate with ground stations and other satellites, spacecraft in Earth's orbit use microwave waves. Microwave frequencies are used by cellular networks to deliver speech and data transmissions between mobile devices and cell towers. Wi-Fi routers: Wi-Fi routers transport data wirelessly between devices connected to a local network using microwave frequencies. Radar systems: Radar systems identify and locate objects using microwave frequencies,

learn more about Microwaves   here:

https://brainly.com/question/15708046

#SPJ4

Other Questions
When your boss, Fernando, says that you need a ROMI of 5.0, he is describing the __________ for the marketing investment. A. Risk factor. B. Suitability factor. C. Total rate. D. Hurdle rate. E. All of these FILL IN THE BLANK Sensorimotor _____ is defined as behavior engaged in by infants to derive pleasure from exercising their existing sensorimotor schemas. suppose that poland and norway both produce beets and liquor. poland's opportunity cost of producing a case of liquor is 4 bushels of beets while norway's opportunity cost of producing a case of liquor is 12 bushels of beets. by comparing the opportunity cost of producing liquor in the two countries, you can tell that has a comparative advantage in the production of liquor and has a comparative advantage in the production of beets. Easy questions pls answer Currents tend to move in large ____ patterns in the Northern Hemisphere.clockwisecounterclockwiserandomirregular Of the following, which could cause a reduction of quality or rating in relation to a specific issuance of municipal bonds?[A]The issuer makes regular scheduled contributions to a sinking fund.[B]The issuer offers another issue of bonds that hold equal claim to the original issue.[C]The issuer deposits funds into an escrow account which will be used to pay the bonds off at maturity.[D]The issuer performs a pre-refunding of part of the original bond issue. do you mind helping me with this? What is the meaning of mean, meadian and mode?(With explanation) the lopez family purchased a new refrigerator with a 30-day return policy. the bryant family bought the same refrigerator from a different store that has no return policy (all sales are final). based on what you read regarding cognitive dissonance, who is more likely to be satisfied with their purchase? FILL IN THE BLANK men, who represent about half the u.s. population, account for about ___ of all arrests for property crime. why are the more than 100 aegean islands between mainland greece and crete known as the cyclades? Select the correct solution for the expression. 2 5 + 3 8 2 5 + 3 8 A. 2 5 + 3 8 = 5 13 2 5 + 3 8 = 5 13 B. 16 40 + 15 40 = 31 40 16 40 + 15 40 = 31 40 C. 10 40 + 24 40 = 34 40 10 40 + 24 40 = 34 40 D. 2 5 + 3 8 = 6 40 analysis is a specific type of data analysis that focuses on the composition of the basket, or bundle, of products purchased during a single shopping occasion. multiple choice question. market basket marketing cart combo cart I am in need of some help with this identify the soft benefits (qualitative) of implementing an effective sales and operations planning process. (check all that apply.) Part A - Cloud Types describes. There are three basic types of cloud: cirrus, cumulus, and stratus. Match each of the following items to the type of cloud Drag the appropriate items into their respective bins. View Available Hint(s) Reset Help The cloud family found at the highest altitudes Are larger and have no distinct individual cloud units High, white, and thin Sheets or layers covering most or all of the sky Have a cauliflower appearance Have a feathery appearance Comprised of globular, individual cloud masses Cirrus Cumulus Stratus Submit Part B - Raindrop formation The maximum radius for cloud droplets is about 0.05 millimeters. However, typical raindrops have volumes thousands of times greater. Let's examine how these tiny cloud droplets turn into raindrops. Forming raindrops occurs within cumulus (cumulonimbus) and stratus (nimbostratus) clouds via the Bergeron process or the collision-coalescence process. The Bergeron process is active at subfreezing temperatures. Ice crystals grow from supercooled water droplets-tiny water droplets that are liquid below the freezing point of water. If a cloud is saturated with water, it is supersaturated with ice. Therefore, as ice crystals form, water droplets evaporate to replenish the water vapor used in forming ice crystals. These ice crystals can grow large enough to fall to the ground, melting to form raindrops as they reach higher temperatures during decent. For the collision-coalescence process: Larger water droplets collide and join with other water droplets, eventually forming raindrops that are large and heavy enough to fall to the ground. When these water droplets have more of an opportunity to collide with other water droplets (e.g., in taller clouds or because of updrafts), they are better able to form raindrops. Additionally, because the droplets are not all exactly the same size, they will move at different rates, increasing the likelihood of collisions. This rainfall can be measured using reflectivity. A higher rate of rainfall reflects more light than lower rainfall rate, so it is possible to determine the rate of rainfall using reflectivity. Select all that apply. View Available Hint(s) Rain forms via the collision-coalescence process when larger water droplets combine with other water droplets while passing through the cloud. Supercooled water in clouds enables the Bergeron process, where raindrops start as ice crystals. Thin sheets of clouds are conducive to raindrop formation via the collision-coalescence process. For temperatures below 0C, air that is saturated with water is not saturated with ice. Submit Now, you will use rainfall rates calculated from reflectivities to determine total rainfall. Part C - Calculating rainfall amounts People look at weather radar maps regularly to visualize current and recent weather patterns. These weather radar maps provides information on the intensity of precipitation in addition to the total amount of precipitation that falls over a given time period. The heavier the rainfall, the more reflective it is. This reflectivity can be used to calculate the rate of rainfall. The table provided below displays data that illustrates the relationship between radar reflectivity values and rainfall rates. Use this information to calculate the amount of rainfall for the radar values and rainfall durations provided. The calculations you will perform involve only simple algebra, like multiplication and addition. Drag the appropriate labels to their respective targets. Note that not all labels will be used. View Available Hint(s) Reset Help 12 inches 16 inches 0.6 inches 13.75 inches 3.25 inches 4.5 inches A reflectivity value of 47 dBZ for 2 hours. Conversion of radar reflectivity to rainfall rate Radar Rainfall Ratel Reflectivity (dBZ) (inches/hr) 65 16+ 60 8.0 55 4.0 52 2.5 A reflectivity value of 30 dBZ for 6 hours. A reflectivity value of 55 dBZ for 4 hours, A reflectivity value of 52 dBZ for 5 y hours. 47 1.3 A reflectivity value of 41 dBZ for 24 hours. 41 0.5 36 0.3 30 0.1 20 trace If foreign countries are increasing their demand for U.S. financial assets, then we can expect the U.S. dollar to _____ and the current account balance to _____, all other things equal. Please help Write 3 sentences answering this question How are we still debating interracial Marriage in 2023? researchers analyzed data from more than 5000 adults and found that the more diet sodas a person drank, the greater the person's weight gain. does this mean that drinking diet soda causes weight gain? The manufacturer of "Allay" pain reliever offered a free sample of the product to visitors who registered at its website. In this case, the communications objective of the website was to: Disseminate Sinfotimulate trialE-commerce