- A housewife purchased a video recorder with a
cash price of $2700 under hire purchase terms.
She paid an initial deposit of 20% of the cash
price and interest at 18% per annum on the out-
standing balance is charged. The amount pay-
able is paid in 12 equal monthly instalments.
Calculate for the videorecorder:

A) the hire purchase

B) the amount of each monthly installment

C) the difference between the hire purchase price and the cash price

D) the difference as a percentage of the cash price

Answers

Answer 1

Calculation for the videorecorder:

A) Hire Purchase Price: $2700

B) Monthly Instalment: $233.33

C) Difference between the hire purchase price and the cash price: $540

D) Difference as a percentage of the cash price: 20%

How to calculate the monthly installment? Calculating monthly installment is a simple process. First, determine the loan amount. Next, calculate the interest rate. Then, determine the length of the loan in months. Finally, use the formula to calculate the monthly installment: Monthly installment = (Loan amount * Interest rate) / (1-(1+interest rate) ^-months) When calculating the monthly installment, it is important to consider the factors of the loan, such as the amount borrowed, the interest rate, and the length of the loan. By calculating the monthly installment correctly, you can ensure that you are able to pay off the loan in a timely manner.

Solution:

A) The hire purchase price is the total cost of the item, which in this case is $2700.

B) The monthly instalment is calculated by taking the total cost of the item and subtracting the initial deposit (20% of the cash price), which is $540, and then dividing this amount by 12 (the number of months). Therefore, the monthly instalment is $233.33.

C) The difference between the hire purchase price and the cash price is calculated by taking the hire purchase price of $2700 and subtracting the cash price of $2160 (which is 80% of the hire purchase price). Therefore, the difference is $540.

D) The difference as a percentage of the cash price is calculated by taking the difference between the hire purchase price and the cash price ($540) and dividing it by the cash price ($2160). Therefore, the difference is 20%.

To learn more about monthly purchase refer to:

https://brainly.com/question/4460395

#SPJ1


Related Questions

Which function will approach positive infinity the fastest?


A. F(x) = 100(1. 5)


B. F(x) = 200(1. 45)*


C. F(x) = 100x5 + 200x3 + 100


D. F(x) = 200x3 + 100x2 + 100

Answers

The function that will approach positive infinity the fastest is B

F(x) = 200(1.45). Option D is not the correct answer.Option B:

F(x) = 200(1.45)

This is an exponential function that grows much faster than all the polynomial functions. The base of this function is greater than 1.

As we increase the value of x, this function will approach infinity much faster than all the other given functions. Therefore, option B is the correct answer.

To solve the given problem, we need to find the function that approaches positive infinity the fastest.

Let's evaluate all the given functions one by one:Option A: F(x) = 100(1.5)

We know that the exponential function grows much faster than a linear function. Thus, the function 100(1.5) is an example of a linear function that has a positive slope. As we increase the value of x, this function will approach infinity, but not as fast as the exponential function.

Therefore, option A is not the correct answer.

Option C: F(x) = 100x5 + 200x3 + 100

We know that the polynomial function grows much slower than the exponential function. The degree of this function is 5. As we increase the value of x, this function will approach infinity, but not as fast as the exponential function.

Therefore, option C is not the correct answer.

Option D: F(x) = 200x3 + 100x2 + 100

We know that the polynomial function grows much slower than the exponential function. The degree of this function is 3. As we increase the value of x, this function will approach infinity, but not as fast as the exponential function.

To know more about positive infinity, visit:

https://brainly.com/question/30090284

#SPJ11

evaluate the line integral along the path c given by x = 2t, y = 4t, where 0 ≤ t ≤ 1. c (y − x) dx 10x2y2 dy

Answers

The value of the line integral along the path c is 132.

To evaluate the line integral along the path c given by x = 2t, y = 4t, where 0 ≤ t ≤ 1, we first need to parameterize the integral in terms of t.

The path c can be written as r(t) = <2t, 4t>, where 0 ≤ t ≤ 1.

Then, we can rewrite the line integral as:

∫c (y − x) dx + 10x^2y^2 dy = ∫0^1 (4t − 2t)(2)dt + 10(2t)^2(4t)^2(4)dt

= ∫0^1 12t^2 + 640t^4 dt

= 4t^3 + 128t^5 | from 0 to 1

= 4 + 128

= 132

Therefore, the value of the line integral along the path c is 132.

To know more about line integral refer here :

https://brainly.com/question/29841988#

#SPJ11

he puritan colony of massachusetts bay was renowned for its high levels of religious toleration. group of answer choices true false

Answers

The given statement  "The Puritan colony of Massachusetts Bay was not known for its high levels of religious toleration." is False because, In fact, the Puritans who founded the colony in the early 17th century were known for their strict religious beliefs and practices.

They came to the New World seeking to establish a "city upon a hill" that would serve as a shining example of Christian virtue and piety. As a result, they were deeply suspicious of anyone who did not share their beliefs and sought to create a society that was strictly controlled by the church.

One of the most famous examples of the lack of religious tolerance in Massachusetts Bay was the case of Anne Hutchinson. Hutchinson was a Puritan woman who held religious meetings in her home where she preached her own interpretations of scripture. Her views were considered heretical by the Puritan leadership, and she was put on trial and ultimately banished from the colony.

Similarly, the Puritans were hostile to Quakers and other religious groups that they saw as a threat to their way of life. Quakers were often subjected to harsh punishments such as public whippings and banishment.

In short, while the Puritans of Massachusetts Bay may have believed in the importance of religious freedom, they did not practice it in a way that we would recognize today. Their society was highly regulated and tightly controlled by the church, and dissenters were not tolerated.

Know more about religious freedom here:

https://brainly.com/question/27982819

#SPJ11

a) if n-vectors x and y make an acute angle, then ∥x y∥ ≥ max{|x∥, ∥y∥}.

Answers

The statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

If two vectors x and y make an acute angle then it does not necessarily imply that the magnitude of their sum (represented as ∥x + y∥) is greater than or equal to the maximum magnitude between the individual vectors (represented as max{|x∥, ∥y∥}).

For illustrate this,

let's consider a counterexample. Suppose we have two vectors in two-dimensional space:

x = (1, 0)

y = (0, 1)

Both vectors, x and y, have a magnitude of 1 and are perpendicular to each other. Therefore, they form a right angle. However, the magnitude of their sum is:

[tex]∥x + y∥ = ∥(1, 0) + (0, 1)∥ = ∥(1, 1)∥ = \sqrt(2)[/tex]

On the other hand, the maximum magnitude between the individual vectors is

[tex]max{|x∥, ∥y∥} = max{|1|, |1|} = 1[/tex]

The magnitude of their sum (√2) is not greater than or equal to the maximum magnitude of the individual vectors (1).

Hence, the statement ∥x y∥ ≥ max{|x∥, ∥y∥} does not hold in general when x and y make an acute angle.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ4

Find the domain of the function p(x)=square root 17/x+5

Answers

the domain of the function p(x) = √(17/(x + 5)) is all real numbers except x = -5.

In interval notation, the domain is (-∞, -5) U (-5, ∞).

To find the domain of the function p(x) = √(17/(x + 5)), we need to consider the values of x that make the expression inside the square root valid.

In this case, the expression inside the square root is 17/(x + 5). For the square root to be defined, the denominator (x + 5) cannot be zero because division by zero is undefined.

Therefore, we need to find the values of x that make the denominator zero and exclude them from the domain.

Setting the denominator (x + 5) equal to zero and solving for x:

x + 5 = 0

x = -5

So, x = -5 makes the denominator zero, which means it is not in the domain of the function.

To know more about function visit:

brainly.com/question/31062578

#SPJ11

River Racing is a company that provides inner tubes for children ond adults to float the river. The child lube has a diameter of 25 feet and the adult tube has a diameter of 3 feet. River Recing owns a total of 160 tubes ond the total diameter of all the tubes is 430 feet. Write o system to determine the number of child tubes, c, and number of adult tubes, a, Ino River Racing owns. ​

Answers

Let c represent the number of child tubes and a represent the number of adult tubes owned by River Racing. We can set up a system of equations based on the given information:

The total number of tubes: c + a = 160

The total diameter of all tubes: 25c + 3a = 430

The first equation represents the total number of tubes owned by River Racing, which is the sum of the child tubes (c) and adult tubes (a), and it equals 160.

The second equation represents the total diameter of all the tubes owned by River Racing. The diameter of each child tube is 25 feet, so the total diameter of the child tubes is 25c. The diameter of each adult tube is 3 feet, so the total diameter of the adult tubes is 3a. The sum of these two terms should equal 430 feet.

Therefore, the system of equations is:

c + a = 160

25c + 3a = 430

Solving this system of equations will give us the values for c (number of child tubes) and a (number of adult tubes) owned by River Racing.

Learn more about equations Visit : brainly.com/question/29174899

#SPJ11

evaluate the surface integral ∬s2xyz ds. where s is the cone with parametric equations x=ucos(v),y=usin(v),z=u and 0≤u≤4,0≤v≤π2.

Answers

To evaluate the surface integral ∬s2xyz ds, we first need to find the unit normal vector n and the magnitude of its cross product with the partial derivatives of x and y with respect to u and v. Using the given parametric equations, we can calculate n = (-2u cos(v), -2u sin(v), u), and the magnitude of the cross product to be 2u^2. Integrating over the surface of the cone, we get the final answer of 128/3π.

To evaluate the surface integral, we need to use the formula ∬s2F⋅dS = ∬D F(x(u,v),y(u,v),z(u,v))|ru×rv|dudv, where F(x,y,z) = (2xyz, 0, 0) and D is the region in the u-v plane that corresponds to the surface of the cone. We can find the unit normal vector n using the formula n = ru×rv/|ru×rv|. After simplifying the cross product, we get n = (-2u cos(v), -2u sin(v), u). The magnitude of the cross product is |ru×rv| = 2u^2. Integrating over the surface of the cone, we get ∬s2xyz ds = ∫0^π/2 ∫0^4 (2u^4 cos(v) sin(v))du dv = 128/3π.

Therefore, the surface integral ∬s2xyz ds over the cone with given parametric equations is equal to 128/3π.

To know more about surface integral visit:

https://brainly.com/question/15177673

#SPJ11

z=f(x,y)
x= r3 s
y= re2s
(a) Find ∂z/∂s (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y .
(b) Find ∂2z/∂s∂r (write your answer in terms of r,s, ∂z/∂x , and ∂z/∂y , ∂2z/∂x2, ∂2z/∂x∂y , and ∂2z/∂y2).
Expert A

Answers

(a) To find ∂z/∂s, we can use the chain rule. Let's start by finding the partial derivatives ∂x/∂s and ∂y/∂s:

∂x/∂s = ∂(r^3s)/∂s = r^3

∂y/∂s = ∂(re^2s)/∂s = re^2s * 2 = 2re^2s

Now, using the chain rule, we have:

∂z/∂s = (∂z/∂x) * (∂x/∂s) + (∂z/∂y) * (∂y/∂s)

So, ∂z/∂s = (∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s

(b) To find ∂2z/∂s∂r, we can differentiate ∂z/∂s with respect to r. Using the product rule, we have:

∂2z/∂s∂r = (∂/∂r)[(∂z/∂x) * r^3 + (∂z/∂y) * 2re^2s]

Taking the derivative of (∂z/∂x) * r^3 with respect to r gives us:

(∂/∂r)[(∂z/∂x) * r^3] = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3

Taking the derivative of (∂z/∂y) * 2re^2s with respect to r gives us:

(∂/∂r)[(∂z/∂y) * 2re^2s] = (∂z/∂y) * 2e^2s

Therefore, ∂2z/∂s∂r = (∂z/∂x) * 3r^2 + (∂^2z/∂x^2) * r^3 + (∂z/∂y) * 2e^2s.

Note: The expressions (∂z/∂x), (∂z/∂y), (∂^2z/∂x^2), and (∂^2z/∂x∂y), (∂^2z/∂y^2) are not provided in the given information and would need to be given or calculated separately to obtain a specific numerical result.

Learn more about differentiate here: brainly.com/question/32388323

#SPJ11

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. How many commercials did Lee see last night?

Answers

Therefore, the number of commercials Lee saw last night is x + 20.

Last night, Lee watched TV for a long time because a movie marathon was on. He saw 20 more commercials than he did on the night he watched the most TV last week. Let the number of commercials Lee watched last week be x.

Now we have to determine the number of commercials Lee watched last night when he saw 20 more commercials than he did on the night he watched the most TV last week. If we let the number of commercials Lee watched last week be x, then the number of commercials Lee saw last night can be written as:

x + 20

The above expression is equivalent to 20 more commercials than the number of commercials Lee saw last week. Therefore, the answer is x + 20.

Now we can calculate the value of x by using the information provided in the question. If we subtract 20 from the number of commercials Lee saw last night, we should get the number of commercials he saw last week, that is:

x = (x + 20) - 20x

= x

Therefore, we can see that there is no unique solution for the number of commercials Lee saw last night. It all depends on the value of x, the number of commercials Lee watched last week. If we know this value, we can easily calculate the number of commercials Lee saw last night.

To know more about marathon visit:

https://brainly.com/question/19869274

#SPJ11

Evaluate the integral using the indicated trigonometric substitution. (Use C for the constant of integration.) x3 x = 6 tan(6) dx, Vx2 36 Sketch and label the associated right triangle.

Answers

The associated right triangle has one angle θ whose tangent is x/6, and the adjacent side has length 6 while the opposite side has length x.

To evaluate the integral, we use the trigonometric substitution x = 6 tan(θ). Then, dx = 6 sec2(θ) dθ, and substituting in the integral we get:

∫(x^2)/(36+x^2) dx = ∫(36 tan^2(θ))/(36 + 36 tan^2(θ)) (6 sec^2(θ) dθ)

= ∫tan^2(θ) dθ

To solve this integral, we use the trigonometric identity tan^2(θ) = sec^2(θ) - 1, so we get:

∫tan^2(θ) dθ = ∫(sec^2(θ) - 1) dθ

= tan(θ) - θ + C

Substituting back x = 6 tan(θ) and simplifying, we get the final result:

∫(x^2)/(36+x^2) dx = 6(x/6 * √(1 + x^2/36) - atan(x/6) + C)

To know more about right triangle,

https://brainly.com/question/6322314

#SPJ11

Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. Which equation can she use to find g, the number of gallons of water she should add? Original (Gallons) Added (Gallons) New (Gallons) Amount of Detergent 1. 98 0 Amount of Solution 11 g StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100 EndFraction = 1 StartFraction 1. 98 Over 11 g EndFraction StartFraction 12 Over 100 EndFraction = 1 StartFraction 11 g Over 1. 98 EndFraction = StartFraction 12 Over 100 EndFraction StartFraction 1. 98 Over 11 g EndFraction = StartFraction 12 Over 100 EndFraction.

Answers

The final solution will be 11.16071428571429 gallons.Meryl needs to add enough water to 11 gallons of an 18% detergent solution to make a 12% detergent solution.

She can use the following equation to find the number of gallons of water she should add:

StartFraction 1. 98 Over 11 g EndFraction minus StartFraction 12 Over 100

EndFraction = 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 12 Over 100 EndFraction + 1StartFraction 1. 98 Over 11 g

EndFraction = StartFraction 112 Over 100

EndFractionStartFraction 1. 98 Over 11 g

EndFraction = 1.12

Now, cross-multiply to solve for g:1

1g = 1.98/1.1211g = 1.767857142857143g = 0.1607142857142857

So, Meryl needs to add 0.1607142857142857 gallons of water to 11 gallons of an 18% detergent solution to make a 12% detergent solution. The final solution will be 11.16071428571429 gallons.

To know more about detergent solution visit:

https://brainly.com/question/31460481

#SPJ11

how many possible phone numbers contain 2021 as a contiguous subsequence (e.g. 532-0219 or 202-1667 but not 230-6179 nor 227-5986)?

Answers

The total number of phone numbers that contain 2021 as a contiguous subsequence is:

7 * 1000 * 1000000 = 7,000,000,000

To count the number of phone numbers that contain 2021 as a contiguous subsequence, we can use the following approach:

First, we choose the position of the first digit of the subsequence, which can be any of the first 7 digits of the phone number (we exclude the last three digits because we need at least 4 digits to form the subsequence). There are 7 ways to choose this position.

Once we have chosen the position of the first digit, we need to choose the next three digits in order to form the subsequence 2021. Since there are 10 digits to choose from, and the digits can be repeated, there are 10^3 = 1000 ways to choose these digits.

Finally, we can choose the remaining 6 digits of the phone number arbitrarily, since we have already guaranteed that the phone number contains the subsequence 2021. There are 10^6 = 1000000 ways to choose these digits.

Know more about contiguous subsequence here:

https://brainly.com/question/6687211

#SPJ11

While solving a standard form problem, we arrive at the following simplex tableau with basic variables 23, x4, x5. The entries α, β, γ,δ and η in the tableau are unknown parameters. For each one of the following statements, find the conditions of the parameter values that will make the statement true (sufficient condition is enough). (The first column indicates the current basis.) B|δ 2000110 3 -1 41α-4 0 1 0|1 5|γ 300-3 1. The optimization problem is unbounded (optimal value is -oo). 2. The current solution is feasible but not optimal 3. The current solution has the optimal objective value and there are multiple set of basis that achieve the same objective value.

Answers

In the given simplex tableau with basic variables 23, x4, and x5, the entries α, β, γ, δ, and η are unknown parameters. To find the conditions of the parameter values that will make the following statements true:

1. For the optimization problem to be unbounded, the objective function's coefficients corresponding to the non-basic variables in the tableau should be negative or zero. In this case, the non-basic variables are x1, x2, and x6. Therefore, we need to have 4α - 3δ ≤ 0 and -γ + 3η ≤ 0 for the problem to be unbounded.

2. For the current solution to be feasible but not optimal, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). Therefore, we need to have δ > 0 and 3γ < 0.

3. For the current solution to have the optimal objective value and multiple sets of basis that achieve the same objective value, we need to have all coefficients in the bottom row of the tableau to be non-negative except for the value in the last column (which is the objective function value). In addition, we need to have at least two coefficients in the bottom row to be zero. Therefore, we need to have δ = 0 and 3γ ≥ 0, and at least one of the following conditions must hold: 4α - 3δ > 0, -γ + 3η > 0, or -4α + 3δ + γ - 3η = 0.

Explanation: The conditions for the given statements are based on the properties of the simplex method and the standard form of the linear programming problem. The simplex method seeks to maximize or minimize the objective function while satisfying the constraints of the problem. The standard form requires all variables to be non-negative and the constraints to be written as linear equations or inequalities. The simplex tableau is used to keep track of the current basic variables, their coefficients, and the objective function value. The conditions for the given statements are derived by analyzing the coefficients in the tableau and their relationships with the objective function value.

To know more about variable visit:

https://brainly.com/question/28248724

#SPJ11

use the fundamental theorem of calculus, part 2 to evaluate ∫1−1(t3−t2)dt.

Answers

Using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To use the fundamental theorem of calculus, part 2 to evaluate the integral ∫1−1(t3−t2)dt, we first need to find the antiderivative of the integrand. To do this, we can apply the power rule of calculus, which states that the antiderivative of x^n is (x^(n+1))/(n+1) + C, where C is the constant of integration. Using this rule, we can find the antiderivative of t^3 - t^2 as follows:
∫(t^3 - t^2)dt = ∫t^3 dt - ∫t^2 dt
= (t^4/4) - (t^3/3) + C
Now that we have found the antiderivative, we can use the fundamental theorem of calculus, part 2, which states that if F(x) is an antiderivative of f(x), then ∫a^b f(x)dx = F(b) - F(a). Applying this theorem to the integral ∫1−1(t3−t2)dt, we get:
∫1−1(t3−t2)dt = (1^4/4) - (1^3/3) - ((-1)^4/4) + ((-1)^3/3)
= (1/4) - (1/3) - (1/4) - (-1/3)
= -1/6
Therefore, using the fundamental theorem of calculus, part 2, we have evaluated the integral ∫1−1(t3−t2)dt to be -1/6.

To know more about calculus visit :

https://brainly.com/question/30761130

#SPJ11

The area of this trapezium is 240cm2. Work out x.

Answers

trapezium's area is 240 cm².Let's also say that the two parallel sides of the trapezium are A and B.The height of the trapezium is x, according to the question.which is 0.5357 cms.

we know that the area of the trapezium is equal to: `1/2 (A + B) x`.

We can rearrange this equation to solve for x, which is what we're looking for.

A formula for `x` is as follows: `x = (2A + 2B) / (AB)`

We can now use this formula to solve for `x`. We'll start by using the values from the given question to plug into the formula. Let's say that side A is 16 cm and side B is 28 cm.Substitute the given values into the formula: `x = (2(16) + 2(28)) / (16(28))`x is then equal to `240 / 448`, or 0.5357 (rounded to 4 decimal places). Therefore, x is approximately equal to 0.5357 centimeters.

to know more area,visit:

https://brainly.com/question/30307509

#SPJ11

A particle moves along the curve defined by the parametric equations x(t) = 2t and y(t) = 36 - t^2 for time t, 0 lessthanorequalto t lessthanorequalto 6. A laser light on the particle points in the direction of motion and shines on the x-axis. (a) What is the velocity vector of the particle? (b) In terms of t. Write an equation of the line tangent to the graph of the curve at the point (2t, 36 - t^2). (c) Express the x-coordinate of the point on the x-axis that the laser light hits as a function of t. (d) At what speed is the laser light moving along the x-axis at lime t = 3 ? Justify your answer.

Answers

a) The velocity vector of the particle is [2, -2t].

b) The equation of the tangent line at[tex](2t, 36 - t^2) is y - (36 - t^2) = -t(x - 2t).[/tex]

c) The x-coordinate of the point on the x-axis that the laser light hits is [tex]x = 2t + (36 - t^2)/t.[/tex]

d) The speed of the laser light along the x-axis at time t = 3 is 1, as it is the absolute value of the derivative of x with respect to t at t = 3.

(a) The velocity vector of the particle is the derivative of the position vector with respect to time:

v(t) = [x'(t), y'(t)] = [2, -2t]

(b) The slope of the tangent line is the derivative of y with respect to x:

dy/dx = (dy/dt)/(dx/dt) = (-2t)/(2) = -t

Using the point-slope form of the equation of a line, the tangent line at [tex](2t, 36 - t^2)[/tex] is:

[tex]y - (36 - t^2) = -t(x - 2t)[/tex]

(c) To find the x-coordinate of the point on the x-axis that the laser light hits, we need to find the intersection of the tangent line and the x-axis. Setting y = 0, we get:

[tex]-t(x - 2t) + (36 - t^2) = 0[/tex]

Solving for x, we get:

[tex]x = 2t + (36 - t^2)/t[/tex]

(d) The speed of the laser light along the x-axis is the absolute value of the derivative of x with respect to t:

[tex]|dx/dt| = |2 - (36 - t^2)/t^2|[/tex]

At time t = 3, we have:

|dx/dt| = |2 - (36 - 9)/9| = |2 - 3| = 1

Therefore, the speed of the laser light along the x-axis at time t = 3 is 1. The justification is that the absolute value of the derivative gives the magnitude of the rate of change of x with respect to time, which represents the speed.

For similar question on velocity vector.

https://brainly.com/question/28501982

#SPJ11

Compute the differential of surface area for the surface S described by the given parametrization. r(u, v)-(eu cos(v), eu sin(v), uv), D-{(u, v) | 0 US 4, 0 2T) v ds- dA

Answers

The differential of the surface area for the given surface S is [tex]e * \sqrt(u^2 + e^2) du dv.[/tex]

How to compute the differential of the surface area for a given parametrized surface?

To compute the differential of the surface area for the surface S described by the given parametrization, we can use the surface area element formula:

dS = |[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex]| du dv,

where ∂r/∂u and ∂r/∂v are the partial derivatives of the position vector r(u, v) with respect to u and v, respectively, and |[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex]| represents the magnitude of their cross-product.

Let's calculate each component step by step:

Calculate [tex]\frac{∂r}{∂u}[/tex]:

[tex]\frac{∂r}{∂u}[/tex] = (ecos(v), esin(v), v)

Calculate [tex]\frac{∂r}{∂v}[/tex]:

[tex]\frac{∂r}{∂v }[/tex]= (-esin(v), ecos(v), u)

Compute the cross-product of [tex]\frac{∂}{∂u}[/tex] and[tex]\frac{∂r}{∂v}[/tex]:

[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex] = [tex](e*cos(v)u, esin(v)*u, e^2)[/tex]

Calculate the magnitude of the cross-product:

|[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex]| = [tex]\sqrt((ecos(v)u)^2 + (esin(v)u)^2 + (e^2)^2)[/tex]

= [tex]\sqrt(u^2e^2cos^2(v) + u^2e^2sin^2(v) + e^4)[/tex]

= [tex]\sqrt(u^2e^2(cos^2(v) + sin^2(v)) + e^4)[/tex]

= [tex]\sqrt(u^2*e^2 + e^4[/tex])

= [tex]e * \sqrt(u^2 + e^2)[/tex]

Now we have the magnitude of the cross product |[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex]|, and we can calculate the differential of the surface area:

dS = |[tex]\frac{∂r}{∂u}[/tex] x [tex]\frac{∂r}{∂v}[/tex]| du dv

= [tex]e * \sqrt(u^2 + e^2) du dv[/tex]

So, the differential of the surface area for the given surface S is [tex]e * \sqrt(u^2 + e^2) du dv.[/tex]

Learn more about computing the differential of the surface area.

brainly.com/question/29318472

#SPJ11

correctly rounded, 20.0030 - 0.491 g =

Answers

The calculation for correctly rounded 20.0030 - 0.491 g is as follows:

20.0030
- 0.491
= 19.5120

To correctly round this answer, we need to consider the significant figures of the original values. The value 20.0030 has five significant figures, while 0.491 has only three. Therefore, the answer should be rounded to three significant figures, which gives us:

19.5 g


When subtracting values with different significant figures, the answer should be rounded to the least number of significant figures in either value. In this case, the value 0.491 has only three significant figures, so the answer should be rounded to three significant figures.


The correctly rounded answer for 20.0030 - 0.491 g is 19.5 g. It is important to consider the significant figures when rounding the answer, as this ensures that the result is accurate and precise.

Tyo know more about significant figures visit:

https://brainly.com/question/29153641

#SPJ11

Ground Speed of a Plane A plane is flying at an airspeed of 340 miles per hour at a heading of 124°. A wind of 45 miles per hour is blowing from the west. Find the ground speed of the plane.

Answers

the ground speed of the plane is approximately 340.56 miles per hour.

To find the ground speed of the plane, we need to take into account the effect of the wind on the plane's motion. We can use vector addition to find the resultant velocity of the plane, which is the vector sum of its airspeed and the velocity of the wind.

First, we need to resolve the airspeed into its components, using trigonometry. The component of the airspeed in the eastward direction is given by:

340 cos(124°)

And the component in the northward direction is given by:

340 sin(124°)

The wind is blowing from the west, so its velocity has a magnitude of 45 miles per hour in the westward direction. Therefore, its components are:

-45 in the eastward direction

0 in the northward direction

Now, we can add the components of the airspeed and the wind to get the components of the resultant velocity. The eastward component of the resultant velocity is:

340 cos(124°) - 45

And the northward component is:

340 sin(124°) + 0

Using a calculator, we can evaluate these expressions as follows:

340 cos(124°) - 45 = -171.98

340 sin(124°) + 0 = 298.68

The negative sign on the eastward component indicates that the plane is flying in the westward direction, relative to the ground. Now, we can use the Pythagorean theorem to find the magnitude of the resultant velocity:

|v| = sqrt((-171.98)^2 + (298.68)^2) = 340.56

To learn more about trigonometry visit:

brainly.com/question/31896723

#SPJ11

suppose the "n" on the left is written in regular 12-point font. find a matrix a that will transform n into the letter on the right, which is written in ‘italics’ in 16-point font.

Answers

The matrix A that transforms the letter 'n' in regular 12-point font to the italicized 'n' in 16-point font can be determined by scaling and shearing operations.

What matrix transformation can be applied to convert 'n' to italicized 'n'?

To achieve the desired transformation, we can apply a combination of scaling and shearing operations using a 2x2 matrix. Let's denote this matrix as A.

To find the specific values of the matrix A, we need to consider the differences between the regular 'n' and the italicized 'n' in terms of scaling and shearing.

The italicized 'n' is slanted compared to the regular 'n'. This slant can be achieved by applying a shear transformation along the x-axis.

We can determine the values of A by examining the specific slant and size changes of the italicized 'n' compared to the regular 'n'.

The matrix A will consist of scaling factors and shear coefficients that capture the desired transformation. The exact values of the matrix elements will depend on the specific slant and size adjustments required for the italicized 'n'.

To obtain the matrix A, we would need to analyze the italicized 'n' in 16-point font and compare it to the regular 'n' in 12-point font to determine the necessary scaling and shearing parameters.

Learn more about Matrix transformations

brainly.com/question/29257504

#SPJ11

The melting points of two alloys used in formulating solder were investigated by melting 21 samples of each material. The sample mean and standard deviation for alloy 1 was X1= 420. 48 and S1= 2. 34. And for alloy 2 they were X2= 425 and S2=32. 5a. Do the sample data support the claim that both alloys have the same melting point? Use a fixed-level test at alpha =. 05 and assume that both populations are normally distributed and have the same standard deviation. B. Find the P-Value for this test

Answers

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

To test the claim that both alloys have the same melting point, we can perform a two-sample t-test. Here's how we can approach it:

a. Hypotheses:

The null hypothesis (H0) is that the means of both alloys are equal.

The alternative hypothesis (Ha) is that the means of both alloys are not equal.

H0: μ1 = μ2

Ha: μ1 ≠ μ2

b. Test statistic:

Since the sample sizes are relatively small (n1 = n2 = 21) and the population standard deviation is unknown, we can use the two-sample t-test. The test statistic is given by:

t = (X1 - X2) / sqrt(Sp^2 * (1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp^2 is the pooled sample variance.

c. Pooled sample variance:

Sp^2 = ((n1 - 1) * S1^2 + (n2 - 1) * S2^2) / (n1 + n2 - 2)

d. Calculating the test statistic:

Substituting the given values:

X1 = 420.48, S1 = 2.34, X2 = 425, S2 = 32.5, n1 = n2 = 21

Sp^2 = ((21 - 1) * 2.34^2 + (21 - 1) * 32.5^2) / (21 + 21 - 2)

Sp^2 = 616.518

t = (420.48 - 425) / sqrt(616.518 * (1/21 + 1/21))

t ≈ -2.061

e. Degrees of freedom:

The degrees of freedom for the two-sample t-test is given by (n1 + n2 - 2), which in this case is (21 + 21 - 2) = 40.

f. Critical value:

With a significance level of α = 0.05 and 40 degrees of freedom, we find the critical t-value using a t-table or statistical software. Let's assume it to be ±2.021 for a two-tailed test.

g. Decision:

Since |t| = 2.061 > 2.021, we reject the null hypothesis.

h. P-value:

To find the p-value, we compare the absolute value of the test statistic (|t| = 2.061) with the critical t-value. If the p-value is less than the significance level (α = 0.05), we reject the null hypothesis. In this case, the p-value is approximately 0.045.

Therefore, the final answer is:

a. The sample data does not support the claim that both alloys have the same melting point.

b. The p-value for this test is approximately 0.045.

Visit here to learn more about p-value:

brainly.com/question/30461126

#SPJ11

p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

a) To test the hypothesis that both alloys have the same melting point, we can use a two-sample t-test with pooled variance since we are assuming equal variances. The null hypothesis is that the difference in mean melting points is zero:

H0: μ1 - μ2 = 0

Ha: μ1 - μ2 ≠ 0

where μ1 and μ2 are the true mean melting points of alloys 1 and 2, respectively.

The test statistic is calculated as:

t = (X1 - X2) / (Sp * sqrt(1/n1 + 1/n2))

where X1 and X2 are the sample means, n1 and n2 are the sample sizes, and Sp is the pooled standard deviation:

Sp = sqrt(((n1 - 1)*S1^2 + (n2 - 1)*S2^2) / (n1 + n2 - 2))

Substituting the given values, we get:

Sp = sqrt(((21 - 1)*2.34^2 + (21 - 1)*32.5^2) / (21 + 21 - 2)) = 17.896

t = (420.48 - 425) / (17.896 * sqrt(1/21 + 1/21)) = -2.56

Using a t-table with 40 degrees of freedom (df = n1 + n2 - 2), the critical values for a two-tailed test at alpha = 0.05 are ±2.021. Since |-2.56| > 2.021, the test statistic falls in the rejection region. Therefore, we reject the null hypothesis and conclude that there is evidence to suggest that the two alloys do not have the same melting point.

b) The p-value for this test is the probability of observing a test statistic more extreme than the one we calculated, assuming the null hypothesis is true. Since this is a two-tailed test, we need to calculate the probability of observing a t-value less than -2.56 or greater than 2.56 with 40 degrees of freedom.

Using a t-table or a t-distribution calculator, we get a p-value of approximately 0.014.

Learn more about null hypothesis at: brainly.com/question/28098932

#SPJ11

Suppose two equally probable one-dimensional densities are of the form: p(x|ωi)∝e-|x-ai|/bi for i= 1,2 and b >0.
(a) Write an analytic expression for each density, that is, normalize each function for arbitrary ai, and positive bi.
(b) Calculate the likelihood ratio p(x|ω1)/p(x|ω2) as a function of your four variables.

Answers

The likelihood ratio can be expressed as:

p(x|ω1)/p(x|ω2) =

(b2/b1) * e^(-(x - a1) + (x - a2)/(b1*b2)) if x >= (a1+a2)/2

(b2/b1) * e^((x - a1) - (x

To normalize each density function, we need to find the appropriate normalization constants. Let's consider each density function separately:

For p(x|ω1):

p(x|ω1) ∝ e^(-|x-a1|/b1)

To normalize this function, we need to find the constant C1 such that the integral of p(x|ω1) over the entire range is equal to 1:

1 = ∫ p(x|ω1) dx

= C1 ∫ e^(-|x-a1|/b1) dx

Since the integral involves an absolute value, we can split it into two parts:

1 = C1 ∫[a1-∞] e^(-(x-a1)/b1) dx + C1 ∫[a1+∞] e^(-(a1-x)/b1) dx

Simplifying each integral separately:

1 = C1 ∫[a1-∞] e^(-x/b1) dx + C1 ∫[a1+∞] e^(-x/b1) dx

To evaluate these integrals, we can use the fact that the integral of e^(-x/b) dx from -∞ to ∞ is equal to 2b:

1 = C1 (2b1)

Therefore, the normalization constant C1 is 1/(2b1), and the normalized density function p(x|ω1) is:

p(x|ω1) = (1/(2b1)) * e^(-|x-a1|/b1)

Similarly, for p(x|ω2), we have:

p(x|ω2) ∝ e^(-|x-a2|/b2)

To normalize this function, we need to find the constant C2 such that the integral of p(x|ω2) over the entire range is equal to 1:

1 = C2 ∫ p(x|ω2) dx

= C2 ∫ e^(-|x-a2|/b2) dx

Following the same steps as before, we find that the normalization constant C2 is 1/(2b2), and the normalized density function p(x|ω2) is:

p(x|ω2) = (1/(2b2)) * e^(-|x-a2|/b2)

(b) The likelihood ratio p(x|ω1)/p(x|ω2) can be calculated as follows:

p(x|ω1)/p(x|ω2) = [(1/(2b1)) * e^(-|x-a1|/b1)] / [(1/(2b2)) * e^(-|x-a2|/b2)]

Simplifying:

p(x|ω1)/p(x|ω2) = (b2/b1) * e^((|x-a1| - |x-a2|)/(b1*b2))

We can further simplify the exponent term by considering the absolute value difference:

|x-a1| - |x-a2| =

(x - a1) + (x - a2) if x >= (a1+a2)/2

(x - a1) - (x - a2) if x < (a1+a2)/2

Know more about likelihood ratio here:

https://brainly.com/question/31539711

#SPJ11

Devon’s tennis coach says that 72% of Devon’s serves are good serves. Devon thinks he has a higher proportion of good serves. To test this, 50 of his serves are randomly selected and 42 of them are good. To determine if these data provide convincing evidence that the proportion of Devon’s serves that are good is greater than 72%, 100 trials of a simulation are conducted. Devon’s hypotheses are: H0: p = 72% and Ha: p > 72%, where p = the true proportion of Devon’s serves that are good. Based on the results of the simulation, the estimated P-value is 0. 6. Using Alpha= 0. 05, what conclusion should Devon reach?




Because the P-value of 0. 06 > Alpha, Devon should reject Ha. There is convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should reject Ha. There is not convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should fail to reject H0. There is convincing evidence that the proportion of serves that are good is more than 72%.


Because the P-value of 0. 06 > Alpha, Devon should fail to reject H0. There is not convincing evidence that the proportion of serves that are good is more than 72%

Answers

no lo sé Rick parece falso porfa

You are building a rectangular brick patio surrounded by crushed stone in a rectangular courtyard. The crushed stone border has a uniform width x (in feet). You have enough money in your budget to purchase patio bricks to cover 140 square feet.
Solve the equation 140 = (20 - 2x)(16 - 2x) to find the width of the border.

Answers

Therefore, Equation 140 = (20 - 2x)(16 - 2x) simplifies to x^2 - 18x + 45 = 0, which can be solved using the quadratic formula to find x = 7.5 feet.

T solve for x, we need to first simplify the equation:
140 = (20 - 2x)(16 - 2x)
140 = 320 - 72x + 4x^2
4x^2 - 72x + 180 = 0
Dividing both sides by 4, we get:
x^2 - 18x + 45 = 0
Now we can solve for x using the quadratic formula:
x = (18 ± sqrt(18^2 - 4(1)(45))) / 2
x = (18 ± sqrt(144)) / 2
x = 9 ± 6
Since x can't be negative, we take the positive value:
x = 15/2 = 7.5 feet.
The width of the border is 7.5 feet.


To find the width of the crushed stone border (x), we need to solve the equation 140 = (20 - 2x)(16 - 2x).
Step 1: Expand the equation.
140 = (20 - 2x)(16 - 2x) = 20*16 - 20*2x - 16*2x + 4x^2
Step 2: Simplify the equation.
140 = 320 - 40x - 32x + 4x^2
Step 3: Rearrange the equation into a quadratic form.
4x^2 - 72x + 180 = 0
Step 4: Divide the equation by 4 to simplify it further.
x^2 - 18x + 45 = 0
Step 5: Factor the equation.
(x - 3)(x - 15) = 0
Step 6: Solve for x.
x = 3 or x = 15
Since the width of the border cannot be greater than half of the smallest side (16 feet), the width of the crushed stone border is x = 3 feet.



Therefore, Equation 140 = (20 - 2x)(16 - 2x) simplifies to x^2 - 18x + 45 = 0, which can be solved using the quadratic formula to find x = 7.5 feet.

To learn more about the quadratic equation visit:

brainly.com/question/28038123

#SPJ11

(1 point) Consider the initial value problem
y′′+4y=−, y(0)=y0, y′(0)=y′0.y′′+4y=e−t, y(0)=y0, y′(0)=y0′.
Suppose we know that y()→0y(t)→0 as →[infinity]t→[infinity]. Determine the solution and the initial conditions.

Answers

The solution to the differential equation with the given initial conditions is: y(t) = y_0 cos(2t) + (y_0' + 1)/2 sin(2t) - [tex]e^{(-t)[/tex]

To solve the differential equation, we first find the homogeneous solution by setting the right-hand side to zero:

y'' + 4y = 0

The characteristic equation is [tex]r^2 + 4 = 0[/tex], which has roots r = ±2i. Therefore, the general solution to the homogeneous equation is:

y_h(t) = c_1 cos(2t) + c_2 sin(2t)

where c_1 and c_2 are constants determined by the initial conditions.

Next, we find the particular solution to the non-homogeneous equation. Since the right-hand side is e^(-t), we guess a particular solution of the form:

y_p(t) = A[tex]e^{(-t)[/tex]

where A is a constant to be determined. Substituting this into the differential equation, we have:

[tex]Ae^{(-t)} - 2Ae^{(-t) }+ 4Ae^{(-t) }= -e^{(-t)[/tex]

Simplifying, we get:

[tex]Ae^{(-t) }= -e^{(-t)[/tex]

which implies A = -1. Therefore, the particular solution is:

[tex]y_p(t) = -e^{(-t)[/tex]

The general solution to the non-homogeneous equation is the sum of the homogeneous and particular solutions:

y(t) = y_h(t) + y_p(t) = c_1 cos(2t) + c_2 sin(2t) -[tex]e^{(-t)[/tex]

Using the initial conditions y(0) = y_0 and y'(0) = y_0', we get:

y(0) = c_1 = y_0

y'(0) = 2c_2 - [tex]e^{(-0)[/tex] = y_0'

Therefore, we have:

c_1 = y_0

c_2 = (y_0' + 1)/2

for such more question on differential equation

https://brainly.com/question/25731911

#SPJ11

How do I set up this problem?

Nancy can paint a fence in 3 hours. It takes Ben 4 hours to do the same job. If they were to work together to paint a fence, approximately how many hours should it take?

Answers

If they work together, they would  work for 1 hour and 43 minutes

What do we do?

We know that the key step that we would have to take here is to convert the sentence that have been given to us to equations and that is how we can be able to obtain the parameters that we are looking for in the problem here.

As such;

Let x = time (hours) it takes for both

then;

x(1/3 + 1/4) = 1

If both of the sides can be multiplied by 12.

x(4 + 3) = 12

x(7) = 12

x = 12/7

x = 1.71 hours or 1 hour and 43 minutes

Learn more about equation:https://brainly.com/question/29657983

#SPJ1

A proportional relationship is graphed
and goes through the point (3, 12).
Determine the y-coordinate of another
point that lies on the graph of the line if
the x-coordinate is 2.
A 5
B 6
C 7
D 8

Answers

Its B because if the point of the x cordinate is 2 then it would be (2,12), then you would divide that.

Mad Hatter Publishing specializes in genre fiction for young adults. Recently, several employees have left the company due to a salary dispute. What change to the graph would reflect this change? Production shifts from Q to R. Production shifts from V to T. The curve shifts left and inward. The curve shifts right and outward.

Answers

Mad Hatter Publishing is a publishing company that mainly focuses on genre fiction for young adults. Due to the salary disputes that the company has recently faced, several employees have left the company.

What change to the graph would reflect this change?The curve shifts left and inward. This is the answer that would reflect the change in the graph due to the salary disputes and employee exits from the company.Salary disputes are known to be the cause of employee exits in a company. This happens when employees are not satisfied with their salary levels and demand an increase.

When their demands are not met, they tend to leave the company for other opportunities. In this case, the same thing happened at Mad Hatter Publishing.This change in the employee base would be reflected in the demand and supply curve of the company.

To know more about Salary visit:

https://brainly.com/question/29105365

#SPJ11

Find the critical values (-Z Answer: ,Z ) pair that corresponds to a 90% (1-q=0.90) confidence level.

Answers

To find the critical values (-Z, Z) pair that corresponds to a 90% confidence level, we need to use the standard normal distribution table or a calculator that can calculate z-scores.

The critical values correspond to the z-scores that divide the area under the normal distribution curve into two equal parts, leaving a total of 10% of the area in the tails. Since the normal distribution is symmetric, the area in each tail is equal to 5%.

Using a standard normal distribution table or calculator, we can find the z-score that corresponds to the area of 0.05 in the right tail, which is denoted by Z. By symmetry, the z-score that corresponds to the area of 0.05 in the left tail is -Z.

For a 90% confidence level, the area in the middle of the curve (between -Z and Z) is equal to 0.90, so the area in each tail is equal to 0.05.

Using a standard normal distribution table or calculator, we find that Z = 1.645 (rounded to three decimal places). Therefore, the critical values (-Z, Z) pair that corresponds to a 90% confidence level is (-1.645, 1.645).

To know more about normal distribution refer here:

https://brainly.com/question/29509087

#SPJ11

The curved surface area of a cylinder is 1320cm2 and its volume is 2640cm2 find the radius

Answers

The radius of the cylinder is 2 cm.

Given, curved surface area of the cylinder = 1320 cm²,

Volume of the cylinder = 2640 cm³

We need to find the radius of the cylinder.

Let's denote it by r.

Let's first find the height of the cylinder.

Let's recall the formula for the curved surface area of the cylinder.

Curved surface area of the cylinder = 2πrhr = curved surface area / 2πh

= (curved surface area) / (2πr)

Substituting the values,

we get,

h = curved surface area / 2πr

= 1320 / (2πr) ------(1)

Let's now recall the formula for the volume of the cylinder.

Volume of the cylinder = πr²h

2640 = πr²h

Substituting the value of h from (1), we get,

2640 = πr² * (1320 / 2πr)

2640 = 660r

Canceling π, we get,

r² = 2640 / 660

r² = 4r = √4r

= 2 cm

Therefore, the radius of the cylinder is 2 cm.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

Other Questions
Complete the missing parts of the table for the following function. y = 6 x -2 -1 0 1 0 1 2 3 1 y [ ] 6 36 36 1? -6=3x+3 Does anyone know this answer With respect to normal base pairing, when a molecule of DNA replicates, thymine will most likely pair with 2 points The name of the SI unit for magnetic field strength, such as that created around a current-carrying wire, is the . Kunal told Ana he was going to drop 10 dimes on the table. He said he would give her all the dimes where the "head" side was showing.How many dimes would Ana most likely get? 1. lara but a dress that originally cost 575 with 20% discount how much did lara pay for the dress 2. a salesman sells a car for 860,000 if you receives a commission of 15% how much will be his commission Protists are usually ____________ and live in _________ environments.A.single-celled, dryB.multi-celled, moistmulti-celled, drysingle-celled, moist Concept Bank a) central tendency d) event g) population j) random experiment m) sample mean p) sample space b) continuous random variable e) measures of spread h) probability k) range n) sample median q) standard deviation c) discrete random variable f) outlier i) variability l) sample o) sample mode r) statistical inference ____ The practically infinite number of possible values that a random variable can take on in an experiment ____ The process of observing the outcome of a random chance event ____ The number that quantifies the likelihood that a certain random event will happen ____ All possible outcomes that can result from a random experiment ____ This exist when successive observations of a particular system vari heyy could you help me out with this question I have been stuck in this question?? The electrostatic force between two charged metal spheres is 2N. If the charge on each sphere is doubled, what is the new force between the spheres?Question 2 options:A. 2NB. 4NC. 1ND. 8 Use the distributive property to find the equivalent expression.3(2 + x) =__+__x 1. Con cul de las siguientes opciones seobtiene la siguiente cantidad: $ 18.90?a) 1 moneda de $ 10, 2 monedas de $ 1,10 monedas de 50 y 1 moneda de20b) 3 monedas de $5, 5 monedas de 50 y 2 monedas de 20 .c) 1 monedas de $ 10, 5 monedas de 50 y 2 monedas de 20 .d) 3 monedas de $5, 7 monedas de 50 y 2 monedas de 20 . Besides providing for our food and health, biodiversity can be a direct source of ________. Enter your answer and show all the steps that you use to solve this problem inthe space provided.The radius of a cylinder is 3.5 fth the height is 14 ft. Find the surface area andvolume of the cylinder to the nearest tenth of a foot. Show your work. Write a letter to your friend describing the advantages of conserving national heritages? 15 points, 8-9 grade workPolynomials P(x) = 2x^4 + 3x^2 - 5x + 7q(x) = -2x^2 + 4x - 3 calculation: A. p(x) + q (x) B. 2 p (x)C. p (x) - q (x) D. 3 p (x) + 4 q (x) E. p (x) q (x)F. (P (x) ) ^2 The effect of disorder of checkpoints proteins and cell cycle regulationI need help!!!!!!??? If corresponding angles are on parallel lines, then their measure is the same _____.alwaysneversometimes Bledsoe Corporation has provided the following data for the month of November: Beginning Ending Raw materials $ 25,100 $ 21,100 Work in process $ 17,100 $ 10,100 Finished Goods $ 48,100 $ 56,100 Additional information: Raw materials purchases $ 72,100 Direct labor cost $ 92,100 Manufacturing overhead cost incurred $ 42,110 Indirect materials included in manufacturing overhead cost incurred $ 4,010 Manufacturing overhead cost applied to Work in Process $ 41,100 Any underapplied or overapplied manufacturing overhead is closed out to cost of goods sold. Required: Prepare a Schedule of Cost of Goods Manufactured and a Schedule of Cost of Goods Sold. what is the value of the expression -3y/xwhen x = 12 and y=-8