The probability of success on the trial 7 for the given binomial experiment is 0.34.
Binomial experiment - what is it?An experiment utilizing a set number of independent trials with just two results is called a binomial experiment. There are two possible outcomes for these experiments: success and failure. Because of the nature of what is being tested, results in these studies can only ever be successes or failures.
Because there are only a limited number of outcomes that can occur during each trial of a binomial experiment, they are unique from other types of studies. Particularly, there can only ever be one of two outcomes in binomial experiments.
The probability of success and failure of a trial is same for every number of trials.
Given that,
n = 10 trials
Success = 0.34
Hence, the probability of success on the trial 7 for the given binomial experiment is 0.34.
Learn more about binomial experiment here:
https://brainly.com/question/22411737
#SPJ1
Stephen has a rectangular rug with a perimeter of 16 feet the width of the rug is 5 feet what is the length of the rug
The length of Stephen's rug is 3 feet.
How can you use the perimeter and width of Stephen's rug to find the length?To find the length of Stephen's rug, we can use the formula for the perimeter of a rectangle, which is P = 2L + 2W, where P is the perimeter, L is the length, and W is the width. In this case, we know that the perimeter of the rug is 16 feet and the width is 5 feet. So, we can plug in these values into the formula and solve for L:
Let's use the formula for the perimeter of a rectangle to solve the problem: Perimeter = 2 x (Length + Width)
We know that the perimeter of the rug is 16 feet and the width is 5 feet. Plugging those values into the formula, we get: 16 = 2 x (Length + 5)
Simplifying the equation, we can divide both sides by 2:
8 = Length + 5
16 = 2L + 2(5)
16 = 2L + 10
2L = 6
L = 3
Therefore, the length of Stephen's rug is 3 feet.
To know more about Perimeter visit:
brainly.com/question/15287805
#SPJ1
Shelly spent 45 minutes jogging and 30 minutes cycling and burned 1350 calories. The next day, Shelly swapped times, doing 30 minutes of jogging and 45 minutes of cycling and burned the same number of calories. How many calories were burned for each minute of jogging and how many for each minute of cycling?
Number of calories burned per minute =
The number of calories burned per minute be 23.33333.
What is meant by system of equations?Equations simultaneously, or a system of equations Several equations in algebra must be solved concurrently (i.e., the solution must satisfy all the equations in the system). There must be an equal number of equations and unknowns for a system to have a singular solution.
In order to locate the point where the lines intersect when the equations are graphed, systems of equations must be solved. The (x,y) ordered pair of this intersection point is regarded as the system's solution.
Let j be the number of calories burned by Shelly while running and c be the number of calories she burns while cycling.
The system of equations be
45j + 30c = 1350
30j + 45c = 1350
45j + 30(10)=1350
j = 23.33333
Therefore, the value j be 23.33333.
To learn more about system of equations refer to:
https://brainly.com/question/28586904
#SPJ1
Question
A tower made of wooden blocks measures114 feet high. Then a block is added that increases the height of the tower by 8 inches.
What is the final height of the block tower?
Answer:
The final height of the tower is 114 feet 8 inches.
To solve this problem, we need to convert the additional 8 inches into feet. 8 inches is equal to 0.67 feet, so the new height of the tower is equal to 114 feet + 0.67 feet which is equal to 114 feet 8 inches.
let be the solution to satisfying . (a) use euler's method with time step to approximate . -3 5.03421 5.03942 5.04269 5.04269 0.2(8e^(-5.04269)) (b) use separation of variables to find exactly.
Answer:
Step-by-step explanation:
c
In computing the sum of an infinite series ∑ [infinity] , x = nn = 1suppose that the answer is desired with an absolute error less than e. Is it safe to stop the addition of terms when their magnitude falls below s? Illustrate with the series ∑[infinity] (0.99)^nn = 1
No, it is not safe to stop the addition of terms when their magnitude falls below s, even if the desired absolute error is less than e.
This is because the magnitude of the terms in the series may not decrease monotonically, and there may be large fluctuations in the magnitudes of the terms.
Therefore, it is necessary to use convergence tests, such as the ratio test or the root test, to determine if the series converges absolutely.
For the series ∑ (0.99)^n, we can use the ratio test to check for absolute convergence:
lim (n → ∞) |(0.99)^(n+1)/(0.99)^n| = 0.99 < 1
Since the limit is less than 1, the series converges absolutely. However, we cannot simply stop adding terms when their magnitude falls below a certain value s, as the magnitude of the terms in the series may not decrease monotonically.
Instead, we need to use the convergence test to determine the number of terms required to achieve the desired absolute error e.
For more questions like Absolute error click the link below:
https://brainly.com/question/4170313
#SPJ4
-3(-3c+7)5(4+2c I need hekppppp
Answer:
90c^2 -30c - 420
Step-by-step explanation:
-3(-3c+7)5(4+2c)
(9c - 21) (20 + 10c)
180c + 90c^2 - 420 - 210c
90c^2 -30c - 420
If a coin is flipped 35 times and lands on heads 14 times, what is the relative
frequency of landing on heads?
OA. 0.35
OB. 0.14
OC. 0.5
OD. 0.4
The relative frequency of landing on heads is 0.4, then the correct option is D.
What is the relative frequency of landing on heads?When we have an experiment with some outcomes, and we perform the experiment N times, and in K of these N times we get a particular outcome, then the relative frequency for that outcome is K/N
In this case the coin is flipped 35 times and it lands on heasd 14 times, then the relative frequency of landing on heads is:
R = 14/35 = 0.4
Learn more about relative frequency.
https://brainly.com/question/3857836
#SPJ1
Calculate the Mean Absolute Deviation (MAD) for the months of January through April using the following data:Month Actual Sales Forecast JAN 1000 600 FEB 1600 2500 MAR 2000 1500 APR 1800 2000
The Mean Absolute Deviation (MAD) for actual sales is 300 and for forecast is 600.
Mean Absolute Deviation evaluates the absolute difference between each data point to its mean. Mean Absolute Deviation can be calculated using formula:
MAD = ∑|x - x bar|
n
where:
x = data point
x bar = data mean
n = number of data
Based on the given data, we know that:
Mean Actual sales = (1,000 + 1,600 + 2,000 + 1,800) / 4
Mean actual sales = 1,600
MAD = |1,000 - 1,600| + |1,600 - 1,600| + | 2,000 - 1,600| + |1,800 - 1,600|
4
MAD = (600 + 0 + 400 + 200) / 4
MAD = 300
Mean Forecast = (600 + 2,500 + 1,500 + 2,000) / 4
Mean forecast = 1,650
MAD Frc = |600 - 1,650| + |2,500 - 1,650| + |1,500 - 1,650| + |2,000 - 1,650|
4
MAD Forecast = (1,050 + 850 + 150 + 350) / 4
MAD Forecast = 600
Learn more about Mean Absolute Deviation here: brainly.com/question/10528201
#SPJ4
The probability distribution for the number of students in statistics classes at IRSC is given, but one value is
missing. Fill in the missing value, then answer the questions that follow. Round solutions to three decimal
places, if necessary.
The missing value is given as follows:
P(X = 28) = 0.31.
The mean and the standard deviation are given as follows:
Mean [tex]\mu = 27.17[/tex]Standard deviation [tex]\sigma = 1.289[/tex]How to obtain the measures?The sum of the probabilities of all the outcomes is of one, hence the missing value is obtained as follows:
0.14 + 0.18 + 0.21 + P(X = 28) + 0.16 = 1
0.69 + P(X = 28) = 1
P(X = 28) = 0.31.
The mean is given by the sum of all outcomes multiplied by their respective probabilities, hence:
E(X) = 25 x 0.14 + 26 x 0.18 + 27 x 0.21 + 28 x 0.31 + 29 x 0.16
E(X) = 27.17.
The standard deviation is given by the square root of the sum of the difference squared between each observation and the mean, multiplied by their respective probabilities, hence:
S(X) = sqrt((25-27.17)² x 0.14 + (26-27.17)² x 0.18 + (27-27.17)² x 0.21 + (28-27.17)² x 0.31 + (29-27.17)² x 0.16)
S(X) = 1.289.
More can be learned about mean and standard deviation at https://brainly.com/question/475676
#SPJ1
set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. y = x , y = 0, x = 4; about x = 8
The integral for the volume of the solid is obtained by rotating the region bounded by the given curves about the specified axis is V = 2[tex]\int\limits^ π/3_[/tex][tex]_{0}[/tex] [tex]{x} tan(x) - x^{2} dx[/tex]
When we rotate a thin vertical strip, about the y-axis.
We get a cylindrical shell with an inner of radius an x and an outer of radius x + dx
The height of the cylinder shell is tan (x) - x
The volume of the cylindrical shell is
dV = π [tex](Outer Radius)^{2} (Height)[/tex] - π[tex](Inner Radius)^{2} (Height)[/tex]
dV = π [tex](x + dx )^{2} (tan(x) - x)[/tex] - π [tex](x )^{2} (tan(x) - x)[/tex]
dV = π[tex](x^{2} + 2 xdx + (dx)^{2} ) (tan(x) - x)[/tex] - π [tex](x)^{2} (tan(x) - x)[/tex]
assume [tex]dx^{2}[/tex]≈ 0
dV = π[tex](x^{2} + 2xdx + 0 - x^{2} ) (tan(x) - x)\\[/tex]
dV = 2πx (tan(x) - x) dx
V = 2[tex]\int\limits^ π/3_[/tex][tex]_{0}[/tex] [tex]{x} tan(x) - x^{2} dx[/tex]
Therefore, the integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis is
V = 2[tex]\int\limits^ π/3_[/tex][tex]_{0}[/tex] [tex]{x} tan(x) - x^{2} dx[/tex] .
To learn more about integral equations,
brainly.com/question/22008756
#SPJ4
The correct question is:
Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.
y=tanx,y=x,x=π/3; about the y-axis
The angle 60 is shown below in standard position, together with a unit circle.
A circle with a radius of 1 is shown with its center located at the origin on a coordinate grid. The radius forms a terminal side that makes a 60-degree-angle with the positive x-axis. The terminal side intersects the circle at (one half, the square root of 3 over 2).
Use the coordinates of the point of intersection of the terminal side and the circle to compute cot 60
Answer: 60 = 1/√3.
Step-by-step explanation:
The cotangent of 60 degrees is equal to the x-coordinate of the point of intersection divided by the y-coordinate of the point of intersection. In this case, the x-coordinate is 0.5 and the y-coordinate is √3/2. Therefore, cot 60 = 0.5 / √3/2 = 1/√3.
So, cot 60 = 1/√3.
Quadrilateral ABCD has vertices A(-3,4), B(2,5), C(3,3), and D(-1,0).
AD is _____ to BC, and AB is _____ to DC. so the quadrilateral ABCD ______ a trapezoid. trapezoid ABCD _____ isosceles because AB ____ congruent to DC
The trapezoid ABCD not isosceles because AB is not congruent to DC.
What is a trapezoid?It is a polygon that has four sides. The sum of the internal angle is 360 degrees. In a trapezoid, one pair of opposite sides are parallel.
Quadrilateral ABCD has vertices A(-3,4), B(2,5), C(3,3), and D(-1,0).
The diagram is given below.
From the diagram, the line segment AD and BC are parallel to each other.
The length AB is given as,
AB² = (2 + 3)² + (4 - 5)²
AB = 5.1 units
The length CD is given as,
CD² = (3 + 1)² + (3 - 0)²
CD= 5 units
The trapezoid ABCD not isosceles because AB is not congruent to DC.
More about the trapezoid link is given below.
https://brainly.com/question/22607187
#SPJ9
Select the correct answer. Consider triangle EFG. a right triangle EFG with base EG of 10, opposite EF of 8, and hypotenuse FG of 12. What is the approximate measure of angle G? A. 41,4 degree
b. 55,8 degree
c. 82,8 degree
d. 94,8 degree
The approximate measure of angle G.The correct answer is a. 41.4 degrees.
The measure of angle G in triangle EFG can be calculated using the Pythagorean Theorem. The Pythagorean Theorem states that the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse. In right triangle EFG, the two legs are EF and EG and the hypotenuse is FG. This can be expressed mathematically as [tex]8^2 + 10^2 = 12^2.[/tex] Simplifying the expression, the equation becomes 64 + 100 = 144. Solving this equation yields 64 = 144, which is true. To calculate the measure of angle G, we will use the inverse tangent function, which is written as [tex]tan^-1[/tex]. In this function, the inverse tangent of the ratio of the opposite side to the adjacent side is equal to the angle. This can be expressed mathematically as [tex]tan^-1 (8/10)[/tex] = G. Using a calculator, the inverse tangent of 8/10 is approximately 41.4 degrees. Therefore, the correct answer is a. 41.4 degrees.
Learn more about Pythagorean Theorem here:
https://brainly.com/question/14930619
#SPJ4
Circle the two sets of lengths that DO NOT form a triangle.
A. 3 m, 5m, 7.3m
B. 12 yd, 25 yd, 13 yd
C. 5 ft, 9 ft, 16 ft
The two sets of lengths that do not form a triangle are the options B and C.
Which sets of lengths do not form a triangle?For a triangle with side lengths x, y, and z we know the triangular inequality, it says that the sum of any two sides must be larger than the other side, so we can write 3 inequalites:
x + y > z
x + z > y
z + y > x
So if for one of the given sets, one of these inequalities is false, then the set does not form a triangle.
For the second set:
12 yd, 25 yd, 13 yd
The inequality:
12 yd + 13yd > 25yd
25 yd> 25 yd
is false, so that set does not form a triangle.
And the last set:
5 ft, 9 ft, 16 ft
The inequality:
5ft + 9ft > 16ft
14ft > 16 ft
Is also false,
So B and C are the correct options.
Laern more about triangles at:
https://brainly.com/question/2217700
#SPJ1
 On Monday, Jack bought 2 burgers and 3 fries for $11.25. On Tuesday, he bought 7 burgers and 5 fries
for $32.50. Find the price of each item.
The burgers is sold each for 3.75 dollars , while the fries is solde for 1.25 dollars each
How to solve for the equationWe would have to solve for the price of each of the items using the simultaneous linear equation method
2 burgers and 3 fries for $11.25
we would have:
Use the elimination method to solve the system of equations:
2 x+ 3 y = 11.25
7 x + 5 y = 32.50
Step 1 - Multiply Equation 1 by 7:
7 * (2x+3y=11.25) --> 14x + 21y = 78.75
Step 2 - Multiply Equation 2 by 2:
2 * (7x+5y=32.50) --> 14x + 10y = 65
Step 3 - s
14x + 21y = 78.75
-(14x + 10y = 65)
------------------------------
21y - 10y = 78.75 - 65
Step 4 - simplify and solve for y:
11y = 13.75
y = 13.75 / 11
y = 1.25
Step 5 - now that we have solved for y, let's rearrange Equation 1 to solve for x:
2x = 11.25 - 3y
Divide each side by 2
2x / 2 = 11.25 - 3y / 2
x = 11.25 - 3y / 2
Step 6 - we determined y = 1.25. Plug it into our Rearranged equation 1:
x = 11.25 - 3(1.25) / 2
x = 11.25 - 3.75 / 2
x = 7.5 / 2
x = 3.75
Since x is the burgers which is 3.75 dollars while y is the fries which is 1.25 dollars
Read more on simultaneous linear equation here:https://brainly.com/question/26310043
#SPJ1
At a high school, the probability that a student is a senior is 0.25. The
probability that a student plays a sport is 0.20. The probability that a student
is a senior and plays a sport is 0.08.
What is the probability that a randomly selected student plays a sport, given
that the student is a senior?
O A. 0.32
• B. 0.08
O C. 0.17
O D. 0.25
The probability that a randomly selected student plays a sport, given
that the student is a senior is A. 0.32
What is probability?Probability is the chance of occurrence of a certain event out of the total no. of events that can occur in a given context.
This is a case of conditional probability and we know,
Conditional probability is a term used in probability theory to describe the likelihood that one event will follow another given the occurrence of another event.
Given, At a high school, the probability that a student is a senior is 0.25
and the probability that a student is a senior and plays a sport is 0.08.
Therefore, The probability that a randomly selected student plays a sport, given that the student is a senior is,
= 0.08/0.25.
= 0.32
learn more about probability here :
https://brainly.com/question/743546
#SPJ9
What is the probability of getting 3 heads in 4 coin tosses, given you get at least 2 heads?
The probability of getting 3 heads in 4 coin tosses, given that we get at least 2 heads, is 4/11 or 0.364.
To solve this problem, we can use the conditional probability formula. Let A be the event of getting 3 heads in 4 coin tosses, and let B be the event of getting at least 2 heads in 4 coin tosses. Then we want to find P(A|B), the probability of getting 3 heads in 4 coin tosses given that we get at least 2 heads.
By the definition of conditional probability, we have:
P(A|B) = P(A and B) / P(B)
To find P(B), the probability of getting at least 2 heads in 4 coin tosses, we can use the complement rule and find the probability of getting 0 or 1 heads:
P(B) = 1 - P(0 heads) - P(1 head)
To find P(0 heads), the probability of getting 0 heads in 4 coin tosses, we use the binomial probability formula:
P(0 heads) = (4 choose 0) * (0.5)^0 * (1-0.5)^(4-0) = 1/16
Similarly, we can find P(1 head):
P(1 head) = (4 choose 1) * (0.5)^1 * (1-0.5)^(4-1) = 4/16
So,
P(B) = 1 - P(0 heads) - P(1 head) = 11/16
To find P(A and B), the probability of getting 3 heads in 4 coin tosses and getting at least 2 heads, we can use the binomial probability formula again:
P(A and B) = (4 choose 3) * (0.5)^3 * (1-0.5)^(4-3) = 4/16
Therefore,
P(A|B) = P(A and B) / P(B) = (4/16) / (11/16) = 4/11
So the probability of getting 3 heads in 4 coin tosses, given that we get at least 2 heads, is 4/11 or approximately 0.364.
You can learn more about probability at
brainly.com/question/24756209
#SPJ4
A ring shaped region inner diameter is 14 cm and its outer diameter is 22 find the area shaded region
The region of the concealed district will be 226.08 square centimeters.
What is the area of the circle?It is the nearby bend of an equidistant point drawn from the middle. The sweep of a circle is the distance between the middle and the boundary.
Let d be the diameter of the circle. Then the area of the circle will be written as,
A = (π/4)d² square units
A ring-formed district's internal measurement is 14 cm and its external breadth is 22 cm. Then the region of the concealed district is given as,
A = (π / 4) (22² - 14²)
A = (3.14 / 4) (484 - 196)
A = 0.785 x 288
A = 226.08 square cm
The region of the concealed district will be 226.08 square centimeters.
More about the area of a circle link is given below.
https://brainly.com/question/11952845
#SPJ9
and one 10p. How much more must he save? 10 A train journey from London to Leed takes 2h 35min. At what time do these trains arrive at Leeds if they leave London at a 11:25 b 18:45?
The system of equations are solved
a) The train will reach at 2:00 PM if it leaves at 11:25 AM
b) The train will reach at 21:20 PM if it leaves at 18:45 PM
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is
Substituting the values in the equation , we get
A train journey from London to Leed takes 2h 35min
So , the total journey time is 155 minutes
a)
The time when the train reaches Leeds when it leaves at 11:25 AM is given by the equation A = 11:25 AM + 155 minutes
On simplifying the equation , we get
The train will reach at 2:00 PM if it leaves at 11:25 AM
b)
The time when the train reaches Leeds when it leaves at 18:45 PM is given by the equation A = 18:45 PM + 155 minutes
On simplifying the equation , we get
The train will reach at 21:20 PM if it leaves at 18:45 PM
Hence , the equations are solved
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ9
The heights of men (in inches) in the United States follow approximately N(69, 2.25). The heights of women (in inches) in the United States follow approximately N(64,2). A female volleyball player at your college is 6 feet 2 inches tall, and a male college soccer player is also 6 feet 2 inches tall. Based on the distribution above, who is taller in relation to the distribution of heights based on gender?
According to the distribution shown above, the heights of female is taller according to the gender based distribution of heights.
What exactly is normal distribution?
The normal distribution, also called the Gaussian distribution, is a probability distribution that is symmetric about the mean, demonstrating that data close to the mean occur more frequently than data distant from the mean. The normal distribution looks like a "bell curve" when represented graphically.
Considering the information provided,
The United States' average male population is 69.
In the US, men's standard deviation is 2.25.
In the US, the average gender distribution is 64.
Women in the US experience a 2 standard deviation.
Now z-score for,
Female players = [tex]\frac{74-64}{2}[/tex] = 5
Playing men = [tex]\frac{74-69}{2.25}[/tex] = 2.22
To know more about z-score visit:
https://brainly.com/question/13299273
#SPJ1
for the phrase “x times the quantity 5 plus y,” what part goes in parentheses?
1. x(5)
2. y
3. x
4 5+y
5. 5
The part of the expression x(5 + y) that goes to the parentheses is 5 + y.
The correct option is 4.
What is an expression?One mathematical expression makes up a term. It might be a single variable (a letter), a single number (positive or negative), or a number of variables multiplied but never added or subtracted. Variables in certain words have a number in front of them. A coefficient is a number used before a phrase.
Given:
A phrase: “x times the quantity 5 plus y.”
5 plus y 5 + y
x times the quantity 5 plus y = x(5 + y)
The complete expression is,
x(5 + y).
Therefore, 5 + y is the required expression.
To learn more about the expression;
brainly.com/question/24242989
#SPJ1
 On Monday, Jack bought 2 burgers and 3 fries for $11.25. On Tuesday, he bought 7 burgers and 5 fries
for $32.50. Find the price of each item.
The price of burger is $3.75 and the fries cost $1.25
How to calculate the price of the burger and the fries?
On Monday, Jack bought 2 burgers and 3 fries for $11.25
On Tuesday he bought 7 burgers and 5 fries for $32.50
Let a represent the cost of the burger
Let b represent the cost of the fries
2a + 3b= 11.25..........equation 1
7a + 5b= 32.50..........equation 2
Solve by elimination method
Multiply equation 1 by 7 and multiply equation 2 by 2
14a + 21b= 78.75
14a + 10b= 65
11b= 13.75
b= 13.75/11
b = 1.25
Substitute 1.25 for b in equation 2
7a + 5(1.25)= 32.50
7a + 6.25= 32.50
7a= 32.50-6.25
7a= 26.25
a= 26.25/7
a= 3.75
Hence the price of burger is $3.75 and the price of fries is $1.25
Read more on price here
https://brainly.com/question/12642760
#SPJ1
5) A medium radio wave band lies btw two wavelength 100 m and 1000m. Determine the corresponding frequency range (take the velocity of the wave to be 299.8X10^6m/s)
Answer: The frequency (f) of a wave is related to its wavelength (λ) and velocity (v) by the equation:
f = v/λ
Given the wavelength range of 100 m to 1000 m for the medium radio wave band, we can calculate the frequency range as follows:
For the lower wavelength of 100 m:
f = v/λ = 299.8 × 10^6 m/s / 100 m = 2.998 × 10^6 Hz
For the higher wavelength of 1000 m:
f = v/λ = 299.8 × 10^6 m/s / 1000 m = 299.8 × 10^3 Hz
Therefore, the frequency range for the medium radio wave band is approximately 2.998 × 10^6 Hz to 299.8 × 10^3 Hz.
Step-by-step explanation:
three different methods for assembling a product were proposed by an industrial engineer. to investigate the number of units assembled correctly with each method, employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by workers. the number of units assembled correctly was recorded, and the analysis of variance p
Since the p-value is less than .05, we reject the null hypothesis that the means of the three assembly methods are equal.
Therefore, we can conclude that there is a significant difference in the means of the three assembly methods.
Source Variation | Squares' Sum | Degrees of Freedom | Mean Square | F
Treatments 4560 2 2280 9.87
Error 6240 27 231.11
Total 10800 29
Using Alpha = .05 to test for any significant difference in the means for the three assembly methods.
The value of the test statistic is 9.87
The p-value is: less than .01
Conclusion not all means of the three assembly methods are equal.
Complete Question:
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 30 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 10 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: SST = 10,800; SSTR = 4560.
Set up the ANOVA table for this problem (to 2 decimals, if necessary).
If
f(x) = x + 2, what is ƒ(4)?
Answer:6
Step-by-step explanation:
ƒ(4)=4+2=6
Solve the formula for t V = 6pirt + 4pir2
Answer: Given the formula:
V = 6pirt + 4pir^2
To solve for t, we'll isolate t by rearranging the equation.
First, subtract 4pir^2 from both sides:
V - 4pir^2 = 6pirt
Next, divide both sides by 6pi:
(V - 4pir^2)/6pi = t
So, t = (V - 4pir^2)/6pi.
This gives us the value of t in terms of V and the radius of the cylinder, r.
Step-by-step explanation:
The speed of a molecule in a uniform gas at equilibrium is a random variable V whose pdf is given by f(v)={kv2e−bv2,v>00, else where,where k is an appropriate constant and b depends on the absolute temperature and mass of the molecule, m, but we will consider b to be known.(a) Calculate k so that f(v) forms a proper pdf.(b) Find the pdf of the kinetic energy of the molecule W, where W=mV2/2.
What number has 6 ten thousands, 2 fewer thousands than ten thousands, the same number of hundreds as ten thousands, 1 fewer ten than ten thousands and 5 more ones than thousands?
Therefore, the number that satisfies all the given conditions is 60,649.
What is equation?In mathematics, an equation is a statement that asserts the equality of two expressions, typically separated by an equals sign ("="). The expressions on either side of the equals sign are called the left-hand side and the right-hand side of the equation, respectively. The purpose of an equation is to describe a relationship between two or more variables or quantities, such as x + 3 = 7 or y = 2x - 5. Equations can be used to solve problems and answer questions in various fields of study, such as algebra, geometry, physics, chemistry, and engineering. Solving an equation typically involves finding the value or values of the variable(s) that make the equation true. Some equations may have a unique solution, while others may have multiple solutions or no solutions at all. The study of equations and their properties is a fundamental topic in mathematics.
Here,
Let's break down the clues given in the problem and use them to find the unknown number:
6 ten thousands: The number must start with 6.
2 fewer thousands than ten thousands: The number of thousands is 2 less than the number of ten thousands. Since there are 6 ten thousands, there are 4 thousands.
Same number of hundreds as ten thousands: The number of hundreds is the same as the number of ten thousands, which is 6.
1 fewer ten than ten thousands: The number of tens is 1 less than the number of ten thousands, which is 6-1=5.
5 more ones than thousands: The number of ones is 5 more than the number of thousands, which is 4+5=9.
Putting all of these clues together, we get the number: 60,649
To know more about equation,
https://brainly.com/question/28243079
#SPJ1
What is 2/18 in simplest form
Answer: 1/9
Step-by-step explanation:
2/2=1
18/2=9
Consider the following program statement consisting of a while loop
while ¬B do S
Assume that the Boolean expression B takes the value true with probability p and the value false with probability q. Assume that the successive test on B are independent.
1. Find the probability that the loop will be executed k times.
2. Find the expected number of times the loop will be executed.
3. Considering the same above assumptions, suppose the loop is now changed to "repeat S until B". What is the expected number of times that the repeat loop will be executed?
The probability is P(k) = (q^(k-1)) * p for k>=1, and P(0) = q. The expected number of times the loop will be executed is 1/p.The expected number of times that the repeat loop will be executed is 1/p.
To find the probability that the loop will be executed k times, we can consider the probability of the event that B is false k-1 times followed by B being true. This probability is q^(k-1) * p.
The event of the loop not being executed at all corresponds to B being true in the first trial, which has a probability of q. Therefore, the probability that the loop will be executed k times is P(k) = (q^(k-1)) * p for k>=1, and P(0) = q.
The expected number of times the loop will be executed is the sum of the probabilities of executing the loop k times, weighted by k, i.e., E = Sum(kP(k)) for k>=1, and E = 0 if P(0) = q.
By using the expression for P(k), we can simplify this to E = Sum(kq^(k-1)*p) for k>=1, and E = 0 if P(0) = q. By applying the formula for the sum of a geometric series, we get E = 1/p.
For the "repeat S until B" loop, the expected number of times that the loop will be executed is the expected number of trials in a Bernoulli process until the first success, where the success probability is p. By using the formula for the expected value of a geometric distribution, we get E = 1/p.
For more questions like Probability click the link below:
https://brainly.com/question/30034780
#SPJ4